Lorentzian geometry for detecting qubit entanglement

被引:2
|
作者
Samuel, Joseph [1 ]
Shivam, Kumar [1 ]
Sinha, Supurna [1 ]
机构
[1] Raman Res Inst, Bangalore 560080, Karnataka, India
关键词
Quantum entanglement; Qubits; Lorentzian geometry; Relativity and energy conditions; SEPARABILITY;
D O I
10.1016/j.aop.2018.07.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a new approach based on Lorentzian geometry to detect qubit entanglement. The treatment is based physically, on the causal structure of Minkowski spacetime, and mathematically, on a Lorentzian Singular Value Decomposition. A surprising feature is the natural emergence of "Energy conditions" used in Relativity. All states satisfy a "Dominant Energy Condition" (DEC) and separable states satisfy the Strong Energy Condition(SEC), while entangled states violate the SEC. We thus propose a test for two qubit entanglement which is an alternative to the positive partial transpose (PPT) test. This test is based on the partial Lorentz transformation (PLT) on individual qubits. Apart from testing for entanglement, our approach also enables us to construct a separable form for the density matrix in those cases where it exists. Our approach leads to a simple graphical three dimensional representation of the state space which shows the entangled states within the set of all states. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 172
页数:14
相关论文
共 50 条
  • [31] LORENTZIAN GEOMETRY OF CR SUBMANIFOLDS
    DUGGAL, KL
    ACTA APPLICANDAE MATHEMATICAE, 1989, 17 (02) : 171 - 193
  • [32] Fundamental domains in Lorentzian geometry
    Anna Pratoussevitch
    Geometriae Dedicata, 2007, 126 : 155 - 175
  • [33] A new geometry of a Lorentzian manifold
    Papuc, DI
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (1-2): : 145 - 158
  • [34] Qubit entanglement breaking channels
    Ruskai, MB
    REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (06) : 643 - 662
  • [35] Fundamental domains in Lorentzian geometry
    Pratoussevitch, Anna
    GEOMETRIAE DEDICATA, 2007, 126 (01) : 155 - 175
  • [36] On a problem of Osserman in Lorentzian geometry
    GarciaRio, E
    Kupeli, DN
    VazquezAbal, ME
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1997, 7 (01) : 85 - 100
  • [37] Hyperbolic PDE and Lorentzian geometry
    Christodoulou, Demetrios
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I, 2014, : 259 - 282
  • [38] Lorentzian geometry of the Heisenberg group
    Rahmani, N.
    Rahmani, S.
    GEOMETRIAE DEDICATA, 2006, 118 (01) : 133 - 140
  • [39] Recent trends in Lorentzian geometry
    Sánchez, Miguel
    Ortega, Miguel
    Romero, Alfonso
    Springer Proceedings in Mathematics and Statistics, 2013, 26
  • [40] Lorentzian Geometry on the Lobachevsky Plane
    Yu. L. Sachkov
    Mathematical Notes, 2023, 114 : 127 - 130