Hyperbolic PDE and Lorentzian geometry

被引:0
|
作者
Christodoulou, Demetrios [1 ]
机构
[1] ETH Zentrum, HG G 48-2, CH-8092 Zurich, Switzerland
关键词
Hyperbolic partial differential equations; Lorentzian geometry; general relativity; fluid mechanics; CAUCHY-PROBLEM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent developments are discussed which deepen our understanding of the relationship between hyperbolic p.d.e. and Lorentzian geometry. These developments are connected with progress in the analysis of the Einstein equations of general relativity and in the analysis of the Euler equations of the mechanics of compressible fluids.
引用
收藏
页码:259 / 282
页数:24
相关论文
共 50 条
  • [1] Lorentzian spectral geometry for globally hyperbolic surfaces
    Finster, Felix
    Mueller, Olaf
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 20 (04) : 751 - 820
  • [2] On Codazzi Tensors on a Hyperbolic Surface and Flat Lorentzian Geometry
    Bonsante, Francesco
    Seppi, Andrea
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (02) : 343 - 417
  • [3] Aspects of noncommutative lorentzian geometry for globally hyperbolic spacetimes
    Moretti, V
    REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (10) : 1171 - 1217
  • [4] Continuous Geometry-Aware Graph Diffusion via Hyperbolic Neural PDE
    Liu, Jiaxu
    Yi, Xinping
    Wu, Sihao
    Yin, Xiangyu
    Zhang, Tianle
    Huang, Xiaowei
    Jin, Shi
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT III, ECML PKDD 2024, 2024, 14943 : 231 - 249
  • [5] Statistical Lorentzian geometry and the closeness of Lorentzian manifolds
    Bombelli, L
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) : 6944 - 6958
  • [6] An Invitation to Lorentzian Geometry
    Müller O.
    Sánchez M.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2014, 115 (3-4) : 153 - 183
  • [7] THE ORIGIN OF LORENTZIAN GEOMETRY
    BOMBELLI, L
    MEYER, DA
    PHYSICS LETTERS A, 1989, 141 (5-6) : 226 - 228
  • [8] A Lorentzian quantum geometry
    Finster, Felix
    Grotz, Andreas
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (04) : 1197 - 1290
  • [9] TRIGONOMETRY IN LORENTZIAN GEOMETRY
    BIRMAN, GS
    NOMIZU, K
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (09): : 543 - &
  • [10] SYSTEMS OF HYPERBOLIC PDE
    SMITH, RR
    MCCALL, D
    COMMUNICATIONS OF THE ACM, 1970, 13 (09) : 567 - &