Hyperbolic PDE and Lorentzian geometry

被引:0
|
作者
Christodoulou, Demetrios [1 ]
机构
[1] ETH Zentrum, HG G 48-2, CH-8092 Zurich, Switzerland
关键词
Hyperbolic partial differential equations; Lorentzian geometry; general relativity; fluid mechanics; CAUCHY-PROBLEM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent developments are discussed which deepen our understanding of the relationship between hyperbolic p.d.e. and Lorentzian geometry. These developments are connected with progress in the analysis of the Einstein equations of general relativity and in the analysis of the Euler equations of the mechanics of compressible fluids.
引用
收藏
页码:259 / 282
页数:24
相关论文
共 50 条
  • [31] Hyperbolic geometry
    Gerretsen, JCH
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1942, 45 (6/10): : 567 - 573
  • [32] Sub-Lorentzian Geometry of Curves and Surfaces in a Lorentzian Lie Group
    Liu, Haiming
    Guan, Jianyun
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [33] Characterization of Hyperbolic Cylinders in a Lorentzian Space Form
    Shu, Shichang
    Han, Annie Yi
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2012, 8 (01) : 79 - 89
  • [34] CR-STRUCTURES AND LORENTZIAN GEOMETRY
    DUGGAL, KL
    ACTA APPLICANDAE MATHEMATICAE, 1986, 7 (03) : 211 - 223
  • [35] The twistor equation in Lorentzian spin geometry
    Helga Baum
    Felipe Leitner
    Mathematische Zeitschrift, 2004, 247 : 795 - 812
  • [36] Comparison theory in Lorentzian and Riemannian geometry
    Ehrlich, Paul E.
    Kim, Seon-Bu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E211 - E217
  • [37] A personal perspective on Global Lorentzian Geometry
    Ehrlich, PE
    Analytical and Numerical Approaches to Mathematical Relativity, 2006, 692 : 3 - 34
  • [38] Semigroups in Möbius and Lorentzian Geometry
    Jimmie D. Lawson
    Geometriae Dedicata, 1998, 70 : 139 - 180
  • [39] The Lorentzian distance formula in noncommutative geometry
    Franco, Nicolas
    NON-REGULAR SPACETIME GEOMETRY, 2018, 968
  • [40] Lorentzian spectral geometry with causal sets
    Yazdi, Yasaman K.
    Letizia, Marco
    Kempf, Achim
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (01)