Hyperbolic PDE and Lorentzian geometry

被引:0
|
作者
Christodoulou, Demetrios [1 ]
机构
[1] ETH Zentrum, HG G 48-2, CH-8092 Zurich, Switzerland
关键词
Hyperbolic partial differential equations; Lorentzian geometry; general relativity; fluid mechanics; CAUCHY-PROBLEM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent developments are discussed which deepen our understanding of the relationship between hyperbolic p.d.e. and Lorentzian geometry. These developments are connected with progress in the analysis of the Einstein equations of general relativity and in the analysis of the Euler equations of the mechanics of compressible fluids.
引用
收藏
页码:259 / 282
页数:24
相关论文
共 50 条
  • [11] Green Hyperbolic Complexes on Lorentzian Manifolds
    Benini, Marco
    Musante, Giorgio
    Schenkel, Alexander
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (02) : 699 - 744
  • [12] Green Hyperbolic Complexes on Lorentzian Manifolds
    Marco Benini
    Giorgio Musante
    Alexander Schenkel
    Communications in Mathematical Physics, 2023, 403 : 699 - 744
  • [13] HYPERBOLIC ANGLE FUNCTION IN THE LORENTZIAN PLANE
    Nesovic, Emilija
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2005, 28 : 139 - 144
  • [14] Lorentzian Geometry on the Lobachevsky Plane
    Sachkov, Yu. L.
    MATHEMATICAL NOTES, 2023, 114 (1-2) : 127 - 130
  • [15] Semigroups in Mobius and Lorentzian geometry
    Lawson, JD
    GEOMETRIAE DEDICATA, 1998, 70 (02) : 139 - 180
  • [16] Lorentzian Distance Learning for Hyperbolic Representations
    Law, Marc T.
    Liao, Renjie
    Snell, Jake
    Zemel, Richard S.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [17] The Christoffel problem in Lorentzian geometry
    De Lima, LL
    De Lira, JHS
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2006, 5 (01) : 81 - 99
  • [18] LORENTZIAN GEOMETRY OF CR SUBMANIFOLDS
    DUGGAL, KL
    ACTA APPLICANDAE MATHEMATICAE, 1989, 17 (02) : 171 - 193
  • [19] Fundamental domains in Lorentzian geometry
    Anna Pratoussevitch
    Geometriae Dedicata, 2007, 126 : 155 - 175
  • [20] A new geometry of a Lorentzian manifold
    Papuc, DI
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (1-2): : 145 - 158