Lorentzian geometry for detecting qubit entanglement

被引:2
|
作者
Samuel, Joseph [1 ]
Shivam, Kumar [1 ]
Sinha, Supurna [1 ]
机构
[1] Raman Res Inst, Bangalore 560080, Karnataka, India
关键词
Quantum entanglement; Qubits; Lorentzian geometry; Relativity and energy conditions; SEPARABILITY;
D O I
10.1016/j.aop.2018.07.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a new approach based on Lorentzian geometry to detect qubit entanglement. The treatment is based physically, on the causal structure of Minkowski spacetime, and mathematically, on a Lorentzian Singular Value Decomposition. A surprising feature is the natural emergence of "Energy conditions" used in Relativity. All states satisfy a "Dominant Energy Condition" (DEC) and separable states satisfy the Strong Energy Condition(SEC), while entangled states violate the SEC. We thus propose a test for two qubit entanglement which is an alternative to the positive partial transpose (PPT) test. This test is based on the partial Lorentz transformation (PLT) on individual qubits. Apart from testing for entanglement, our approach also enables us to construct a separable form for the density matrix in those cases where it exists. Our approach leads to a simple graphical three dimensional representation of the state space which shows the entangled states within the set of all states. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 172
页数:14
相关论文
共 50 条
  • [21] Locking entanglement with a single qubit
    Horodecki, K
    Horodecki, M
    Horodecki, P
    Oppenheim, J
    PHYSICAL REVIEW LETTERS, 2005, 94 (20)
  • [22] Entanglement structures in qubit systems
    Rangamani, Mukund
    Rota, Massimiliano
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (38)
  • [23] The Christoffel problem in Lorentzian geometry
    De Lima, LL
    De Lira, JHS
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2006, 5 (01) : 81 - 99
  • [24] A Diagrammatic Axiomatisation for Qubit Entanglement
    Hadzihasanovic, Amar
    2015 30TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2015, : 573 - 584
  • [25] Detecting genuine multipartite entanglement in three-qubit systems with eternal non-Markovianity
    Vaishy, Ankit
    Mitra, Subhadip
    Bhattacharya, Samyadeb
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (22)
  • [26] Qubit entanglement in multimagnon states
    Pratt, J. S.
    PHYSICAL REVIEW B, 2006, 73 (18):
  • [27] Entanglement and the power of one qubit
    Datta, A
    Flammia, ST
    Caves, CM
    PHYSICAL REVIEW A, 2005, 72 (04):
  • [28] Nonlocality and entanglement in qubit systems
    Batle, J.
    Casas, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (44)
  • [29] Multipartite entanglement in qubit systems
    Dipartimento di Matematica, Università di Bari, I-70125 Bari, Italy
    不详
    Att Aca Naz Lincei Cl Sci Fis Mat Nat Rend Lincei Mat Appl, 2009, 1 (25-67):
  • [30] Multipartite entanglement in qubit systems
    Facchi, Paolo
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2009, 20 (01) : 25 - 67