On a problem of Osserman in Lorentzian geometry

被引:38
|
作者
GarciaRio, E
Kupeli, DN
VazquezAbal, ME
机构
[1] UNIV SANTIAGO DE COMPOSTELA,DEPT ANALISE MATEMAT,E-15706 SANTIAGO COMPOSTE,SPAIN
[2] MIDDLE E TECH UNIV,DEPT MATH,TR-06531 ANKARA,TURKEY
[3] UNIV SANTIAGO DE COMPOSTELA,DEPT XEOMETRIA & TOPOLOXIA,E-15706 SANTIAGO COMPOSTE,SPAIN
关键词
Osserman conjecture; Lorentz manifold; Jacobi operator; infinitesimal isotropy; warped product;
D O I
10.1016/S0926-2245(96)00037-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A problem of Osserman on the constancy of the eigenvalues of the Jacobi operator is studied in Lorentzian geometry. Attention is paid to the different cases of timelike, spacelike and null Osserman condition. One also shows a relation between the null Osserman condition and a previous one on infinitesimal null isotropy.
引用
收藏
页码:85 / 100
页数:16
相关论文
共 50 条
  • [1] CONFORMALLY OSSERMAN LORENTZIAN MANIFOLDS
    Blazic, Novica
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2005, 28 : 87 - 96
  • [2] A note on Osserman Lorentzian manifolds
    Blazic, N
    Bokan, N
    Gilkey, P
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 227 - 230
  • [3] The Christoffel problem in Lorentzian geometry
    De Lima, LL
    De Lira, JHS
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2006, 5 (01) : 81 - 99
  • [4] Four dimensional Osserman Lorentzian manifolds
    GarciaRio, E
    Kupeli, DN
    NEW DEVELOPMENTS IN DIFFERENTIAL GEOMETRY, 1996, 350 : 201 - 211
  • [5] Curvature properties of φ-null Osserman Lorentzian S-manifolds
    Brunetti, Letizia
    Caldarella, Angelo V.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (01): : 97 - 113
  • [6] Statistical Lorentzian geometry and the closeness of Lorentzian manifolds
    Bombelli, L
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) : 6944 - 6958
  • [7] An Invitation to Lorentzian Geometry
    Müller O.
    Sánchez M.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2014, 115 (3-4) : 153 - 183
  • [8] THE ORIGIN OF LORENTZIAN GEOMETRY
    BOMBELLI, L
    MEYER, DA
    PHYSICS LETTERS A, 1989, 141 (5-6) : 226 - 228
  • [9] A Lorentzian quantum geometry
    Finster, Felix
    Grotz, Andreas
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (04) : 1197 - 1290
  • [10] TRIGONOMETRY IN LORENTZIAN GEOMETRY
    BIRMAN, GS
    NOMIZU, K
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (09): : 543 - &