On a problem of Osserman in Lorentzian geometry

被引:38
|
作者
GarciaRio, E
Kupeli, DN
VazquezAbal, ME
机构
[1] UNIV SANTIAGO DE COMPOSTELA,DEPT ANALISE MATEMAT,E-15706 SANTIAGO COMPOSTE,SPAIN
[2] MIDDLE E TECH UNIV,DEPT MATH,TR-06531 ANKARA,TURKEY
[3] UNIV SANTIAGO DE COMPOSTELA,DEPT XEOMETRIA & TOPOLOXIA,E-15706 SANTIAGO COMPOSTE,SPAIN
关键词
Osserman conjecture; Lorentz manifold; Jacobi operator; infinitesimal isotropy; warped product;
D O I
10.1016/S0926-2245(96)00037-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A problem of Osserman on the constancy of the eigenvalues of the Jacobi operator is studied in Lorentzian geometry. Attention is paid to the different cases of timelike, spacelike and null Osserman condition. One also shows a relation between the null Osserman condition and a previous one on infinitesimal null isotropy.
引用
收藏
页码:85 / 100
页数:16
相关论文
共 50 条
  • [41] Hausdorff Closed Limits and Rigidity in Lorentzian Geometry
    Galloway, Gregory J.
    Vega, Carlos
    ANNALES HENRI POINCARE, 2017, 18 (10): : 3399 - 3426
  • [42] Lorentzian twister spinors and CR-geometry
    Baum, H
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1999, 11 (01) : 69 - 96
  • [43] Hausdorff Closed Limits and Rigidity in Lorentzian Geometry
    Gregory J. Galloway
    Carlos Vega
    Annales Henri Poincaré, 2017, 18 : 3399 - 3426
  • [44] Geodesic connectedness of the causal completion in the Lorentzian geometry
    Do-Hyung Kim
    Jin-Whan Yim
    General Relativity and Gravitation, 2006, 38 : 485 - 493
  • [45] Reduction method based on tensor and lorentzian geometry
    Tang K.-W.
    Liu R.-S.
    Du H.
    Su Z.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2011, 37 (09): : 1151 - 1156
  • [46] Lorentzian spectral geometry for globally hyperbolic surfaces
    Finster, Felix
    Mueller, Olaf
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 20 (04) : 751 - 820
  • [47] Conformal geometry of surfaces in Lorentzian space forms
    Alias, LJ
    Palmer, B
    GEOMETRIAE DEDICATA, 1996, 60 (03) : 301 - 315
  • [48] Critical point theory and global Lorentzian geometry
    Dipartimento di Matematica, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (1 PART 1): : 605 - 616
  • [49] On Invariants of m-Vector in Lorentzian Geometry
    Oren, Idris
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2016, 9 (01): : 38 - 44
  • [50] On geometry of hypersurfaces of a pseudoconformal space of Lorentzian signature
    Akivis, MA
    Goldberg, VV
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 26 (1-2) : 112 - 126