On a problem of Osserman in Lorentzian geometry

被引:38
|
作者
GarciaRio, E
Kupeli, DN
VazquezAbal, ME
机构
[1] UNIV SANTIAGO DE COMPOSTELA,DEPT ANALISE MATEMAT,E-15706 SANTIAGO COMPOSTE,SPAIN
[2] MIDDLE E TECH UNIV,DEPT MATH,TR-06531 ANKARA,TURKEY
[3] UNIV SANTIAGO DE COMPOSTELA,DEPT XEOMETRIA & TOPOLOXIA,E-15706 SANTIAGO COMPOSTE,SPAIN
关键词
Osserman conjecture; Lorentz manifold; Jacobi operator; infinitesimal isotropy; warped product;
D O I
10.1016/S0926-2245(96)00037-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A problem of Osserman on the constancy of the eigenvalues of the Jacobi operator is studied in Lorentzian geometry. Attention is paid to the different cases of timelike, spacelike and null Osserman condition. One also shows a relation between the null Osserman condition and a previous one on infinitesimal null isotropy.
引用
收藏
页码:85 / 100
页数:16
相关论文
共 50 条
  • [21] Recent trends in Lorentzian geometry
    Sánchez, Miguel
    Ortega, Miguel
    Romero, Alfonso
    Springer Proceedings in Mathematics and Statistics, 2013, 26
  • [22] Lorentzian Geometry on the Lobachevsky Plane
    Yu. L. Sachkov
    Mathematical Notes, 2023, 114 : 127 - 130
  • [23] Sub-Lorentzian Geometry of Curves and Surfaces in a Lorentzian Lie Group
    Liu, Haiming
    Guan, Jianyun
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [24] CR-STRUCTURES AND LORENTZIAN GEOMETRY
    DUGGAL, KL
    ACTA APPLICANDAE MATHEMATICAE, 1986, 7 (03) : 211 - 223
  • [25] The twistor equation in Lorentzian spin geometry
    Helga Baum
    Felipe Leitner
    Mathematische Zeitschrift, 2004, 247 : 795 - 812
  • [26] Comparison theory in Lorentzian and Riemannian geometry
    Ehrlich, Paul E.
    Kim, Seon-Bu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E211 - E217
  • [27] A personal perspective on Global Lorentzian Geometry
    Ehrlich, PE
    Analytical and Numerical Approaches to Mathematical Relativity, 2006, 692 : 3 - 34
  • [28] Semigroups in Möbius and Lorentzian Geometry
    Jimmie D. Lawson
    Geometriae Dedicata, 1998, 70 : 139 - 180
  • [29] The Lorentzian distance formula in noncommutative geometry
    Franco, Nicolas
    NON-REGULAR SPACETIME GEOMETRY, 2018, 968
  • [30] Lorentzian spectral geometry with causal sets
    Yazdi, Yasaman K.
    Letizia, Marco
    Kempf, Achim
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (01)