SUMS OF POLYNOMIAL TYPE EXCEPTIONAL UNITS MODULO n

被引:3
|
作者
Zhao, Junyong [1 ,2 ]
Hong, Shaofang [1 ]
Zhu, Chaoxi [1 ,3 ]
机构
[1] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[2] Nanyang Inst Technol, Sch Math & Stat, Nanyang 473004, Peoples R China
[3] Sci & Technol Commun Security Lab, Chengdu 610041, Peoples R China
基金
美国国家科学基金会;
关键词
polynomial-type exceptional unit; exponential sum; ring of residue classes; principle of cross-classification; NUMBER-FIELDS; EQUATIONS;
D O I
10.1017/S0004972721000551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f (x) is an element of Z[x] be a nonconstant polynomial. Let n >= 1, k >= 2 and c be integers. An integer a is called an f-exunit in the ring Z(n) of residue classes modulo n if gcd(f(a), n) = 1. We use the principle of cross-classification to derive an explicit formula for the number N-k,N-f,N-c(n) of solutions (x(1),..., x(k)) of the congruence x(1) + ... + x(k) c (mod n) with all x(i) being f-exunits in the ring Z(n). This extends a recent result of Anand et al. ['On a question off-exunits in Z/nZ', Arch. Math. (Basel) 116 (2021), 403-409]. We derive a more explicit formula for N-k,N-f,N-c (n) when f (x) is linear or quadratic.
引用
收藏
页码:202 / 211
页数:10
相关论文
共 50 条
  • [21] THE NUMBER OF ZERO SUMS MODULO M IN A SEQUENCE OF LENGTH N
    KISIN, M
    MATHEMATIKA, 1994, 41 (81) : 149 - 163
  • [22] On subset sums of Znx which are equally distributed modulo n
    Konstantinos, Gaitanas
    ARCHIV DER MATHEMATIK, 2023, 121 (01) : 47 - 54
  • [23] Modulo 2n-2 Arithmetic Units
    Vassalos, Evangelos
    Bakalis, Dimitris
    2013 IEEE EUROCON, 2013, : 1800 - 1807
  • [24] Sums of fractions modulo p
    Diaz, C. A.
    Garaev, M. Z.
    ARCHIV DER MATHEMATIK, 2016, 106 (04) : 337 - 344
  • [25] Subset sums modulo a prime
    Nguyen, Hoi H.
    Szemeredi, Endre
    Vu, Van H.
    ACTA ARITHMETICA, 2008, 131 (04) : 303 - 316
  • [26] ON THE JACOBI SUMS MODULO PN
    WANG, J
    JOURNAL OF NUMBER THEORY, 1991, 39 (01) : 50 - 64
  • [27] On a Congruence Modulo n(3) Involving Two Consecutive Sums of Powers
    Mestrovic, Romeo
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (08)
  • [28] Fibonacci Sums Modulo 5
    Adegoke, Kunle
    Frontczak, Robert
    Goy, Taras
    ANNALES MATHEMATICAE SILESIANAE, 2024,
  • [29] Sums of fractions modulo p
    C. A. Díaz
    M. Z. Garaev
    Archiv der Mathematik, 2016, 106 : 337 - 344
  • [30] On polynomial Gauss sums (mod Pn), n ≥ 2
    Hsu, Chih-Nung
    Nan, Ting-Ting
    ACTA ARITHMETICA, 2010, 143 (04) : 393 - 401