ON THE JACOBI SUMS MODULO PN

被引:7
|
作者
WANG, J [1 ]
机构
[1] DALIAN UNIV TECHNOL,INST APPL MATH,DALIAN 116024,PEOPLES R CHINA
关键词
D O I
10.1016/0022-314X(91)90033-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the Jacobi sums over a ring of residues modulo a prime power and obtain the basic relationship between Gauss sums and Jacobi sums, which allows us to determine the absolute value of the Jacobi sums. As an application, we discuss the congruence x1p + ... + xrp ≡ 1 (mod p2), where p is an odd prime. © 1991.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 50 条
  • [1] Upper bounds of modulo pn trigonometric sums
    Saïbi, M
    COMPOSITIO MATHEMATICA, 1999, 116 (03) : 311 - 319
  • [2] Applications of an elementary resolution of singularities algorithm to exponential sums and congruences modulo pn
    Michael Greenblatt
    Israel Journal of Mathematics, 2016, 212 : 315 - 335
  • [3] APPLICATIONS OF AN ELEMENTARY RESOLUTION OF SINGULARITIES ALGORITHM TO EXPONENTIAL SUMS AND CONGRUENCES MODULO pn
    Greenblatt, Michael
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 212 (01) : 315 - 335
  • [4] On symplectic graphs modulo pn
    Meemark, Yotsanan
    Prinyasart, Thanakorn
    DISCRETE MATHEMATICS, 2011, 311 (17) : 1874 - 1878
  • [5] Sums of fractions modulo p
    Diaz, C. A.
    Garaev, M. Z.
    ARCHIV DER MATHEMATIK, 2016, 106 (04) : 337 - 344
  • [6] Subset sums modulo a prime
    Nguyen, Hoi H.
    Szemeredi, Endre
    Vu, Van H.
    ACTA ARITHMETICA, 2008, 131 (04) : 303 - 316
  • [7] Sums of Idempotents Modulo n
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (08): : 761 - 761
  • [8] Fibonacci Sums Modulo 5
    Adegoke, Kunle
    Frontczak, Robert
    Goy, Taras
    ANNALES MATHEMATICAE SILESIANAE, 2024,
  • [9] Sums of fractions modulo p
    C. A. Díaz
    M. Z. Garaev
    Archiv der Mathematik, 2016, 106 : 337 - 344
  • [10] On a generalization of Jacobi sums
    Rojas-Leon, Antonio
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77