SUMS OF POLYNOMIAL TYPE EXCEPTIONAL UNITS MODULO n

被引:3
|
作者
Zhao, Junyong [1 ,2 ]
Hong, Shaofang [1 ]
Zhu, Chaoxi [1 ,3 ]
机构
[1] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[2] Nanyang Inst Technol, Sch Math & Stat, Nanyang 473004, Peoples R China
[3] Sci & Technol Commun Security Lab, Chengdu 610041, Peoples R China
基金
美国国家科学基金会;
关键词
polynomial-type exceptional unit; exponential sum; ring of residue classes; principle of cross-classification; NUMBER-FIELDS; EQUATIONS;
D O I
10.1017/S0004972721000551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f (x) is an element of Z[x] be a nonconstant polynomial. Let n >= 1, k >= 2 and c be integers. An integer a is called an f-exunit in the ring Z(n) of residue classes modulo n if gcd(f(a), n) = 1. We use the principle of cross-classification to derive an explicit formula for the number N-k,N-f,N-c(n) of solutions (x(1),..., x(k)) of the congruence x(1) + ... + x(k) c (mod n) with all x(i) being f-exunits in the ring Z(n). This extends a recent result of Anand et al. ['On a question off-exunits in Z/nZ', Arch. Math. (Basel) 116 (2021), 403-409]. We derive a more explicit formula for N-k,N-f,N-c (n) when f (x) is linear or quadratic.
引用
收藏
页码:202 / 211
页数:10
相关论文
共 50 条
  • [41] ON MULTIPLICATION OF POLYNOMIALS MODULO A POLYNOMIAL
    WINOGRAD, S
    SIAM JOURNAL ON COMPUTING, 1980, 9 (02) : 225 - 229
  • [42] Double and triple sums modulo a prime
    Gyarmati, Katalin
    Konyagin, Sergei
    Ruzsa, Imre Z.
    ADDITIVE COMBINATORICS, 2007, 43 : 271 - 277
  • [43] ON SUMS OF FIBONACCI NUMBERS MODULO p
    Garcia, Victor C.
    Luca, Florian
    Mejia Huguet, V. Janitzio
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) : 413 - 419
  • [44] Two sums that are congruent modulo p
    Seiffert, HJ
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (02): : 176 - 176
  • [45] Ternary Kloosterman sums modulo 4
    Goeloglu, F.
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (01) : 160 - 166
  • [46] On short Kloosterman sums modulo a prime
    Korolev, M. A.
    MATHEMATICAL NOTES, 2016, 100 (5-6) : 820 - 827
  • [47] Exponential sums modulo prime powers
    Cochrane, T
    ACTA ARITHMETICA, 2002, 101 (02) : 131 - 149
  • [48] On ternary Kloosterman sums modulo 12
    Garaschuk, Kseniya
    Lisonek, Petr
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (04) : 1083 - 1090
  • [49] On the Jones polynomial modulo primes
    Aiello, Valeriano
    Baader, Sebastian
    Ferretti, Livio
    GLASGOW MATHEMATICAL JOURNAL, 2023, 65 (03) : 730 - 734
  • [50] Estimates of trigonometric sums modulo pr
    Yu. V. Malykhin
    Mathematical Notes, 2006, 80 : 748 - 752