Moving Object Detection on RGB-D Videos Using Graph Regularized Spatiotemporal RPCA

被引:24
|
作者
Javed, Sajid [1 ]
Bouwmans, Thierry [2 ]
Sultana, Maryam [1 ]
Jung, Soon Ki [1 ]
机构
[1] Kyungpook Natl Univ, Sch Comp Sci & Engn, 80 Daehak Ro, Daegu 702701, South Korea
[2] Univ La Rochelle, Lab MIA Math Image & Applicat, F-17000 La Rochelle, France
来源
NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2017 | 2017年 / 10590卷
基金
新加坡国家研究基金会;
关键词
LOW-RANK;
D O I
10.1007/978-3-319-70742-6_22
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Moving object detection is the fundamental step for various computer vision tasks. Many existing methods are still limited in accurately detecting the moving objects because of complex background scenes such as illumination condition, color saturation, and shadows etc. RPCA models have shown potential for moving object detection, where input data matrix is decomposed into a low-rank matrix representing the background image and a sparse component identifying moving objects. However, RPCA methods are not ideal for real-time processing because of the batch processing issues. These methods also show a performance degradation without encoding spatiotemporal and depth information. To address these problems, we investigate the performance of online Spatiotemporal RPCA (SRPCA) algorithm [1] for moving object detection using RGB-D videos. SRPCA is a graph regularized algorithm which preserves the low-rank spatiotemporal information in the form of dual spectral graphs. This graph regularized information is then encoded into the objective function which is solved using online optimization. Experiments show competitive results as compared to four state-of-the-art sub-space learning methods.
引用
收藏
页码:230 / 241
页数:12
相关论文
共 50 条
  • [41] Efficient Object Motion Detection Based on RGB-D Image
    Wang, Yi-Hua
    Sheu, Ming-Hwa
    Sun, Chi-Chia
    2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2015, : 438 - 439
  • [42] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [43] Local Background Enclosure for RGB-D Salient Object Detection
    Feng, David
    Barnes, Nick
    You, Shaodi
    McCarthy, Chris
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2343 - 2350
  • [44] Aggregate interactive learning for RGB-D salient object detection
    Wu, Jingyu
    Sun, Fuming
    Xu, Rui
    Meng, Jie
    Wang, Fasheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [45] Bifurcated Backbone Strategy for RGB-D Salient Object Detection
    Zhai, Yingjie
    Fan, Deng-Ping
    Yang, Jufeng
    Borji, Ali
    Shao, Ling
    Han, Junwei
    Wang, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 8727 - 8742
  • [46] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [47] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [48] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [49] MobileSal: Extremely Efficient RGB-D Salient Object Detection
    Wu, Yu-Huan
    Liu, Yun
    Xu, Jun
    Bian, Jia-Wang
    Gu, Yu-Chao
    Cheng, Ming-Ming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10261 - 10269
  • [50] RGB-D Salient Object Detection With Ubiquitous Target Awareness
    Zhao, Yifan
    Zhao, Jiawei
    Li, Jia
    Chen, Xiaowu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7717 - 7731