Moving Object Detection on RGB-D Videos Using Graph Regularized Spatiotemporal RPCA

被引:24
|
作者
Javed, Sajid [1 ]
Bouwmans, Thierry [2 ]
Sultana, Maryam [1 ]
Jung, Soon Ki [1 ]
机构
[1] Kyungpook Natl Univ, Sch Comp Sci & Engn, 80 Daehak Ro, Daegu 702701, South Korea
[2] Univ La Rochelle, Lab MIA Math Image & Applicat, F-17000 La Rochelle, France
来源
NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2017 | 2017年 / 10590卷
基金
新加坡国家研究基金会;
关键词
LOW-RANK;
D O I
10.1007/978-3-319-70742-6_22
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Moving object detection is the fundamental step for various computer vision tasks. Many existing methods are still limited in accurately detecting the moving objects because of complex background scenes such as illumination condition, color saturation, and shadows etc. RPCA models have shown potential for moving object detection, where input data matrix is decomposed into a low-rank matrix representing the background image and a sparse component identifying moving objects. However, RPCA methods are not ideal for real-time processing because of the batch processing issues. These methods also show a performance degradation without encoding spatiotemporal and depth information. To address these problems, we investigate the performance of online Spatiotemporal RPCA (SRPCA) algorithm [1] for moving object detection using RGB-D videos. SRPCA is a graph regularized algorithm which preserves the low-rank spatiotemporal information in the form of dual spectral graphs. This graph regularized information is then encoded into the objective function which is solved using online optimization. Experiments show competitive results as compared to four state-of-the-art sub-space learning methods.
引用
收藏
页码:230 / 241
页数:12
相关论文
共 50 条
  • [21] RGB-D SLAM with moving object tracking in dynamic environments
    Dai, Weichen
    Zhang, Yu
    Zheng, Yuxin
    Sun, Donglei
    Li, Ping
    IET CYBER-SYSTEMS AND ROBOTICS, 2021, 3 (04) : 281 - 291
  • [22] Dynamic Object Detection Using Improved Vibe for RGB-D SLAM
    Xu, Yue
    Guo, Qing
    Chen, Juan
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 1664 - 1669
  • [23] DVSOD: RGB-D Video Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Wang, Size
    Li, Wenbo
    Cheng, Li
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [24] Total Variation Regularized RPCA for Irregularly Moving Object Detection Under Dynamic Background
    Cao, Xiaochun
    Yang, Liang
    Guo, Xiaojie
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (04) : 1014 - 1027
  • [25] Multiview RGB-D Dataset for Object Instance Detection
    Georgakis, Georgios
    Reza, Md Alimoor
    Mousavian, Arsalan
    Le, Phi-Hung
    Kosecka, Jana
    PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 426 - 434
  • [26] Adaptive Fusion for RGB-D Salient Object Detection
    Wang, Ningning
    Gong, Xiaojin
    IEEE ACCESS, 2019, 7 : 55277 - 55284
  • [27] Advancing in RGB-D Salient Object Detection: A Survey
    Chen, Ai
    Li, Xin
    He, Tianxiang
    Zhou, Junlin
    Chen, Duanbing
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [28] Tensor Total Variation Regularized Moving Object Detection for Surveillance Videos
    Tom, Anju Jose
    George, Sudhish N.
    2018 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS (SPCOM 2018), 2018, : 327 - 331
  • [29] RGB-D Salient Object Detection Using Saliency and Edge Reverse Attention
    Ikeda, Tomoki
    Ikehara, Masaaki
    IEEE ACCESS, 2023, 11 : 68818 - 68825
  • [30] Multimodal Convolutional Neural Network for Object Detection Using RGB-D Images
    Mocanu, Irina
    Clapon, Cosmin
    2018 41ST INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2018, : 307 - 310