Moving Object Detection on RGB-D Videos Using Graph Regularized Spatiotemporal RPCA

被引:24
|
作者
Javed, Sajid [1 ]
Bouwmans, Thierry [2 ]
Sultana, Maryam [1 ]
Jung, Soon Ki [1 ]
机构
[1] Kyungpook Natl Univ, Sch Comp Sci & Engn, 80 Daehak Ro, Daegu 702701, South Korea
[2] Univ La Rochelle, Lab MIA Math Image & Applicat, F-17000 La Rochelle, France
来源
NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2017 | 2017年 / 10590卷
基金
新加坡国家研究基金会;
关键词
LOW-RANK;
D O I
10.1007/978-3-319-70742-6_22
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Moving object detection is the fundamental step for various computer vision tasks. Many existing methods are still limited in accurately detecting the moving objects because of complex background scenes such as illumination condition, color saturation, and shadows etc. RPCA models have shown potential for moving object detection, where input data matrix is decomposed into a low-rank matrix representing the background image and a sparse component identifying moving objects. However, RPCA methods are not ideal for real-time processing because of the batch processing issues. These methods also show a performance degradation without encoding spatiotemporal and depth information. To address these problems, we investigate the performance of online Spatiotemporal RPCA (SRPCA) algorithm [1] for moving object detection using RGB-D videos. SRPCA is a graph regularized algorithm which preserves the low-rank spatiotemporal information in the form of dual spectral graphs. This graph regularized information is then encoded into the objective function which is solved using online optimization. Experiments show competitive results as compared to four state-of-the-art sub-space learning methods.
引用
收藏
页码:230 / 241
页数:12
相关论文
共 50 条
  • [31] RGB-D Object Recognition and Grasp Detection Using Hierarchical Cascaded Forests
    Asif, Umar
    Bennamoun, Mohammed
    Sohel, Ferdous A.
    IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (03) : 547 - 564
  • [32] Robust Dual-Graph Regularized Moving Object Detection
    Qin, Jing
    Shen, Ruilong
    Zhu, Ruihan
    Xie, Biyun
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 487 - 492
  • [33] Fast Graph-Based Object Segmentation for RGB-D Images
    Toscana, Giorgio
    Rosa, Stefano
    Bona, Basilio
    PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2, 2018, 16 : 42 - 58
  • [34] Viewpoint Invariant Action Recognition Using RGB-D Videos
    Liu, Jian
    Akhtar, Naveed
    Mian, Ajmal
    IEEE ACCESS, 2018, 6 : 70061 - 70071
  • [35] Saliency Prototype for RGB-D and RGB-T Salient Object Detection
    Zhang, Zihao
    Wang, Jie
    Han, Yahong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3696 - 3705
  • [36] RGB-D Object Classification Using Covariance Descriptors
    Fehr, Duc
    Beksi, William J.
    Zermas, Dimitris
    Papanikolopoulos, Nikolaos
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5467 - 5472
  • [37] FALL DETECTION IN RGB-D VIDEOS BY COMBINING SHAPE AND MOTION FEATURES
    Kumar, Durga Priya
    Yun, Yixiao
    Gu, Irene Yu-Hua
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1337 - 1341
  • [38] CS-RPCA: CLUSTERED SPARSE RPCA FOR MOVING OBJECT DETECTION
    Jayed, Sajid
    Mahmood, Arif
    Dias, Jorge
    Werghi, Naoufel
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 3209 - 3213
  • [39] A new benchmark for camouflaged object detection: RGB-D camouflaged object detection dataset
    Zhang, Dongdong
    Wang, Chunping
    Fu, Qiang
    OPEN PHYSICS, 2024, 22 (01):
  • [40] An Object Recognition Method using RGB-D Sensor
    Maeda, Daisuke
    Morimoto, Masakazu
    2013 SECOND IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR 2013), 2013, : 857 - 861