EIGENVALUES OF THE DRIFTING LAPLACIAN ON SMOOTH METRIC MEASURE SPACES

被引:8
|
作者
Zeng, Lingzhong [1 ]
Sun, He-Jun [2 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang, Jiangxi, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
drifting Laplacian; eigenvalue; metric measure space; Ricci soliton; self-shrinker; DIRICHLET LAPLACIANS; RICCI; BOUNDS; SINGULARITIES; INEQUALITIES; DIAMETER; SOLITONS; RATIOS;
D O I
10.2140/pjm.2022.319.439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is a fundamental task to estimate the eigenvalues of the drifting Laplacian in geometric analysis. Here, we prove a general formula for the Dirichlet eigenvalue problem of the drifting Laplacian. Using this formula, we establish some eigenvalue inequalities of the drifting Laplacian on some important smooth metric measure spaces, including Riemannian manifolds isometrically immersed in a Euclidean space, gradient Ricci solitons, selfshrinkers, manifolds admitting certain special functions, metric measure spaces with Bakry-Emery curvature conditions, and round cylinders. We use new and interesting techniques to construct trial functions and deal with some inequalities. For example, on gradient Ricci solitons, we construct the test functions via Busemann functions associated with the geodesics to give an intrinsic inequality and use geometric rigidity to determine eigenvalues under looser conditions. Recall that singularity classification of Ricci flows has experienced considerable development in geometric analysis, and geometric analysts obtained many important and interesting results. We apply some of them to estimate the eigenvalues of the drifting Laplacian in our settings.
引用
收藏
页码:439 / 470
页数:32
相关论文
共 50 条
  • [31] Heat kernel on smooth metric measure spaces and applications
    Wu, Jia-Yong
    Wu, Peng
    MATHEMATISCHE ANNALEN, 2016, 365 (1-2) : 309 - 344
  • [32] Estimates for eigenvalues of the bi-drifting Laplacian operator
    Feng Du
    Chuanxi Wu
    Guanghan Li
    Changyu Xia
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 703 - 726
  • [33] ESTIMATES FOR THE HIGHER EIGENVALUES OF THE DRIFTING LAPLACIAN ON HADAMARD MANIFOLDS
    Xiong, Xin
    Zeng, Lingzhong
    Zhu, Huihui
    KODAI MATHEMATICAL JOURNAL, 2022, 45 (01) : 143 - 156
  • [34] On the Laplacian eigenvalues and metric parameters of hypergraphs
    Rodríguez, JA
    LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (01): : 1 - 14
  • [35] Estimates for eigenvalues of the bi-drifting Laplacian operator
    Du, Feng
    Wu, Chuanxi
    Li, Guanghan
    Xia, Changyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 703 - 726
  • [36] Eigenvalues of the drifting Laplacian on complete noncompact Riemannian manifolds
    Zeng, Lingzhong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 141 : 1 - 15
  • [37] HARMONIC FUNCTIONS AND END NUMBERS ON SMOOTH METRIC MEASURE SPACES
    Fu, Xuenan
    Wu, Jia-yong
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2025, 62 (01) : 1 - 31
  • [38] Smooth metric measure spaces with non-negative curvature
    Munteanu, Ovidiu
    Wang, Jiaping
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2011, 19 (03) : 451 - 486
  • [39] Universal inequalities on complete noncompact smooth metric measure spaces
    Li, Yanli
    Du, Feng
    ARCHIV DER MATHEMATIK, 2017, 109 (06) : 591 - 598
  • [40] SMOOTH METRIC MEASURE SPACES AND QUASI-EINSTEIN METRICS
    Case, Jeffrey S.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (10)