Heat kernel on smooth metric measure spaces and applications

被引:19
|
作者
Wu, Jia-Yong [1 ]
Wu, Peng [2 ]
机构
[1] Shanghai Maritime Univ, Dept Math, Haigang Ave 1550, Shanghai 201306, Peoples R China
[2] Cornell Univ, Dept Math, White Hall, Ithaca, NY 14853 USA
关键词
LIOUVILLE THEOREMS; RICCI; MANIFOLDS; OPERATORS; EIGENVALUE; UNIQUENESS; CURVATURE; LAPLACIAN; DIAMETER; GEOMETRY;
D O I
10.1007/s00208-015-1289-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a Harnack inequality for positive solutions of the f-heat equation and Gaussian upper and lower bound estimates for the f-heat kernel on complete smooth metric measure spaces with Bakry-A parts per thousand mery Ricci curvature bounded below. Both upper and lower bound estimates are sharp when the Bakry-A parts per thousand mery Ricci curvature is nonnegative. The main argument is the De Giorgi-Nash-Moser theory. As applications, we prove an -Liouville theorem for f-subharmonic functions and an -uniqueness theorem for f-heat equations when f has at most linear growth. We also obtain eigenvalues estimates and f-Green's function estimates for the f-Laplace operator.
引用
收藏
页码:309 / 344
页数:36
相关论文
共 50 条
  • [1] Heat kernel on smooth metric measure spaces and applications
    Jia-Yong Wu
    Peng Wu
    Mathematische Annalen, 2016, 365 : 309 - 344
  • [2] Heat kernel on smooth metric measure spaces with nonnegative curvature
    Wu, Jia-Yong
    Wu, Peng
    MATHEMATISCHE ANNALEN, 2015, 362 (3-4) : 717 - 742
  • [3] Heat kernel on smooth metric measure spaces with nonnegative curvature
    Jia-Yong Wu
    Peng Wu
    Mathematische Annalen, 2015, 362 : 717 - 742
  • [4] Heat Kernel Bounds on Metric Measure Spaces and Some Applications
    Jiang, Renjin
    Li, Huaiqian
    Zhang, Huichun
    POTENTIAL ANALYSIS, 2016, 44 (03) : 601 - 627
  • [5] Heat Kernel Bounds on Metric Measure Spaces and Some Applications
    Renjin Jiang
    Huaiqian Li
    Huichun Zhang
    Potential Analysis, 2016, 44 : 601 - 627
  • [6] Locality of the Heat Kernel on Metric Measure Spaces
    Olaf Post
    Ralf Rückriemen
    Complex Analysis and Operator Theory, 2018, 12 : 729 - 766
  • [7] Locality of the Heat Kernel on Metric Measure Spaces
    Post, Olaf
    Rueckriemen, Ralf
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (03) : 729 - 766
  • [8] Sharp heat kernel bounds and entropy in metric measure spaces
    Huaiqian Li
    ScienceChina(Mathematics), 2018, 61 (03) : 487 - 510
  • [9] Sharp heat kernel bounds and entropy in metric measure spaces
    Li, Huaiqian
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (03) : 487 - 510
  • [10] Sharp heat kernel bounds and entropy in metric measure spaces
    Huaiqian Li
    Science China Mathematics, 2018, 61 : 487 - 510