Heat kernel on smooth metric measure spaces and applications

被引:19
|
作者
Wu, Jia-Yong [1 ]
Wu, Peng [2 ]
机构
[1] Shanghai Maritime Univ, Dept Math, Haigang Ave 1550, Shanghai 201306, Peoples R China
[2] Cornell Univ, Dept Math, White Hall, Ithaca, NY 14853 USA
关键词
LIOUVILLE THEOREMS; RICCI; MANIFOLDS; OPERATORS; EIGENVALUE; UNIQUENESS; CURVATURE; LAPLACIAN; DIAMETER; GEOMETRY;
D O I
10.1007/s00208-015-1289-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a Harnack inequality for positive solutions of the f-heat equation and Gaussian upper and lower bound estimates for the f-heat kernel on complete smooth metric measure spaces with Bakry-A parts per thousand mery Ricci curvature bounded below. Both upper and lower bound estimates are sharp when the Bakry-A parts per thousand mery Ricci curvature is nonnegative. The main argument is the De Giorgi-Nash-Moser theory. As applications, we prove an -Liouville theorem for f-subharmonic functions and an -uniqueness theorem for f-heat equations when f has at most linear growth. We also obtain eigenvalues estimates and f-Green's function estimates for the f-Laplace operator.
引用
收藏
页码:309 / 344
页数:36
相关论文
共 50 条
  • [21] On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces
    Zhen-Qing Chen
    Panki Kim
    Takashi Kumagai
    Acta Mathematica Sinica, English Series, 2009, 25 : 1067 - 1086
  • [22] On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces
    Chen, Zhen-Qing
    Kim, Panki
    Kumagai, Takashi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (07) : 1067 - 1086
  • [23] HEAT KERNELS AND BESOV SPACES ON METRIC MEASURE SPACES
    Cao, Jun
    Grigor'yan, Alexander
    JOURNAL D ANALYSE MATHEMATIQUE, 2022, 148 (02): : 637 - 680
  • [24] Heat kernels and Besov spaces on metric measure spaces
    Jun Cao
    Alexander Grigor’yan
    Journal d'Analyse Mathématique, 2022, 148 : 637 - 680
  • [25] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below
    Luigi Ambrosio
    Nicola Gigli
    Giuseppe Savaré
    Inventiones mathematicae, 2014, 195 : 289 - 391
  • [26] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below
    Ambrosio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    INVENTIONES MATHEMATICAE, 2014, 195 (02) : 289 - 391
  • [27] Rigidity of weighted Einstein smooth metric measure spaces
    Brozos-Vazquez, Miguel
    Mojon-Alvarez, Diego
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 181 : 91 - 112
  • [28] Comparison theorems on smooth metric measure spaces with boundary
    Wang, Lin Feng
    Zhang, Ze Yu
    Zhou, Yu Jie
    ADVANCES IN GEOMETRY, 2016, 16 (04) : 401 - 411
  • [29] COUNTING ENDS ON COMPLETE SMOOTH METRIC MEASURE SPACES
    Wu, Jia-Yong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (05) : 2231 - 2239
  • [30] Smooth metric measure spaces with weighted Poincar, inequality
    Nguyen Thac Dung
    Sung, Chiung Jue Anna
    MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (3-4) : 613 - 632