Smooth metric measure spaces with weighted Poincar, inequality

被引:6
|
作者
Nguyen Thac Dung [1 ]
Sung, Chiung Jue Anna [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu, Taiwan
关键词
COMPLETE MANIFOLDS;
D O I
10.1007/s00209-012-1023-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study smooth metric measure space (M, g, e (-f) dv) satisfying a weighted Poincar, inequality and establish a rigidity theorem for such a space under a suitable Bakry-A parts per thousand mery curvature lower bound. We also consider the space of f-harmonic functions with finite energy and prove a structure theorem.
引用
收藏
页码:613 / 632
页数:20
相关论文
共 50 条
  • [1] Smooth metric measure spaces with weighted Poincaré inequality
    Nguyen Thac Dung
    Chiung Jue Anna Sung
    Mathematische Zeitschrift, 2013, 273 : 613 - 632
  • [2] Modulus and the Poincaré inequality on metric measure spaces
    Stephen Keith
    Mathematische Zeitschrift, 2003, 245 : 255 - 292
  • [3] Rigidity theorems on smooth metric measure spaces with weighted Poincare inequality
    Fu, Hai-Ping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 98 : 1 - 12
  • [4] Rigidity of weighted Einstein smooth metric measure spaces
    Brozos-Vazquez, Miguel
    Mojon-Alvarez, Diego
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 181 : 91 - 112
  • [5] GRADIENT ESTIMATES FOR THE WEIGHTED LICHNEROWICZ EQUATION ON SMOOTH METRIC MEASURE SPACES
    Zhao, Liang
    Chen, Gang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (01) : 335 - 345
  • [6] Weighted Sobolev spaces on metric measure spaces
    Ambrosio, Luigi
    Pinamonti, Andrea
    Speight, Gareth
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 746 : 39 - 65
  • [7] Adams inequality on metric measure spaces
    Makalainen, Tero
    REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (02) : 533 - 558
  • [8] The ∞-Poincare Inequality in Metric Measure Spaces
    Durand-Cartagena, Estibalitz
    Jaramillo, Jesus A.
    Shanmugalingam, Nageswari
    MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (01) : 63 - 85
  • [9] Positive mass and Dirac operators on weighted manifolds and smooth metric measure spaces
    Law, Michael B.
    Lopez, Isaac M.
    Santiago, Daniel
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 209
  • [10] Weighted p-harmonic functions and rigidity of smooth metric measure spaces
    Nguyen Thac Dung
    Nguyen Duy Dat
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 959 - 980