On the Laplacian eigenvalues and metric parameters of hypergraphs

被引:55
|
作者
Rodríguez, JA [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada & Telemat, Barcelona, Spain
来源
LINEAR & MULTILINEAR ALGEBRA | 2002年 / 50卷 / 01期
关键词
Laplacian eigenvalues; Laplacian matrix; hypergraph; graph eigenvalues; diameter; excess;
D O I
10.1080/03081080290011692
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to generalize some concepts and recent results of the algebraic graph theory in order to investigate and describe, by algebraic methods, the properties of some combinatorial structures. Here we introduce a version of "Laplacian matrix" of a hypergraph and we obtain several spectral-like results on its metric parameters, such as the diameter, mean distance, excess, bandwidth and cutsets.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Normalized Laplacian Eigenvalues of Hypergraphs
    Xu, Leyou
    Zhou, Bo
    GRAPHS AND COMBINATORICS, 2024, 40 (05)
  • [2] Laplacian eigenvalues and partition problems in hypergraphs
    Rodriguez, J. A.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 916 - 921
  • [3] Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues
    Hu, Shenglong
    Qi, Liqun
    Shao, Jia-Yu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2980 - 2998
  • [4] Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
    Changjiang Bu
    Yamin Fan
    Jiang Zhou
    Frontiers of Mathematics in China, 2016, 11 : 511 - 520
  • [5] Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
    Bu, Changjiang
    Fan, Yamin
    Zhou, Jiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 511 - 520
  • [6] Distance (Signless) Laplacian Eigenvalues of k-uniform Hypergraphs
    Liu, Xiangxiang
    Wang, Ligong
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, : 1093 - 1111
  • [7] On the number of negative eigenvalues of the Laplacian on a metric graph
    Behrndt, Jussi
    Luger, Annemarie
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (47)
  • [8] The proof of a conjecture on largest Laplacian and signless Laplacian H-eigenvalues of uniform hypergraphs
    Yuan, Xiying
    Qi, Liqun
    Shao, Jiayu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 490 : 18 - 30
  • [9] EIGENVALUES OF THE DRIFTING LAPLACIAN ON SMOOTH METRIC MEASURE SPACES
    Zeng, Lingzhong
    Sun, He-Jun
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 319 (02) : 439 - 470
  • [10] Eigenvalues of the drifted Laplacian on complete metric measure spaces
    Cheng, Xu
    Zhou, Detang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)