EIGENVALUES OF THE DRIFTING LAPLACIAN ON SMOOTH METRIC MEASURE SPACES

被引:8
|
作者
Zeng, Lingzhong [1 ]
Sun, He-Jun [2 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang, Jiangxi, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
drifting Laplacian; eigenvalue; metric measure space; Ricci soliton; self-shrinker; DIRICHLET LAPLACIANS; RICCI; BOUNDS; SINGULARITIES; INEQUALITIES; DIAMETER; SOLITONS; RATIOS;
D O I
10.2140/pjm.2022.319.439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is a fundamental task to estimate the eigenvalues of the drifting Laplacian in geometric analysis. Here, we prove a general formula for the Dirichlet eigenvalue problem of the drifting Laplacian. Using this formula, we establish some eigenvalue inequalities of the drifting Laplacian on some important smooth metric measure spaces, including Riemannian manifolds isometrically immersed in a Euclidean space, gradient Ricci solitons, selfshrinkers, manifolds admitting certain special functions, metric measure spaces with Bakry-Emery curvature conditions, and round cylinders. We use new and interesting techniques to construct trial functions and deal with some inequalities. For example, on gradient Ricci solitons, we construct the test functions via Busemann functions associated with the geodesics to give an intrinsic inequality and use geometric rigidity to determine eigenvalues under looser conditions. Recall that singularity classification of Ricci flows has experienced considerable development in geometric analysis, and geometric analysts obtained many important and interesting results. We apply some of them to estimate the eigenvalues of the drifting Laplacian in our settings.
引用
收藏
页码:439 / 470
页数:32
相关论文
共 50 条
  • [21] On the p-Laplacian evolution equation in metric measure spaces
    Corny, Wojciech
    Mazon, Jose M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (08)
  • [22] Rigidity of weighted Einstein smooth metric measure spaces
    Brozos-Vazquez, Miguel
    Mojon-Alvarez, Diego
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 181 : 91 - 112
  • [23] Comparison theorems on smooth metric measure spaces with boundary
    Wang, Lin Feng
    Zhang, Ze Yu
    Zhou, Yu Jie
    ADVANCES IN GEOMETRY, 2016, 16 (04) : 401 - 411
  • [24] COUNTING ENDS ON COMPLETE SMOOTH METRIC MEASURE SPACES
    Wu, Jia-Yong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (05) : 2231 - 2239
  • [25] Smooth metric measure spaces with weighted Poincar, inequality
    Nguyen Thac Dung
    Sung, Chiung Jue Anna
    MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (3-4) : 613 - 632
  • [26] HARMONIC MAPS FROM SMOOTH METRIC MEASURE SPACES
    Wang, Guofang
    Xu, Deliang
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (09)
  • [27] On a class of quasilinear operators on smooth metric measure spaces
    Li, Xiaolong
    Tu, Yucheng
    Wang, Kui
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2024, 32 (10) : 2757 - 2803
  • [28] Heat kernel on smooth metric measure spaces and applications
    Jia-Yong Wu
    Peng Wu
    Mathematische Annalen, 2016, 365 : 309 - 344
  • [29] GAP THEOREMS FOR ENDS OF SMOOTH METRIC MEASURE SPACES
    Hua, Bobo
    Wu, Jia-Yong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (11) : 4947 - 4957
  • [30] Smooth metric measure spaces with weighted Poincaré inequality
    Nguyen Thac Dung
    Chiung Jue Anna Sung
    Mathematische Zeitschrift, 2013, 273 : 613 - 632