Real-Time Clinical Gait Analysis and Foot Anomalies Detection Using Pressure Sensors and Convolutional Neural Network

被引:4
|
作者
Islam, Mahdi [1 ]
Tabassum, Musarrat [1 ]
Nishat, Mirza Muntasir [1 ]
Faisal, Fahim [1 ]
Hasan, Muhammad Sayem [1 ]
机构
[1] Islamic Univ Technol, Dept Elect & Elect Engn, Dhaka, Bangladesh
关键词
Convolutional Neural Network (CNN); Gait Analysis; Foot Anomalies; Predictive Analysis; PERFORMANCE EVALUATION; RECOGNITION; EIGENFACES;
D O I
10.1109/ICBIR54589.2022.9786472
中图分类号
F [经济];
学科分类号
02 ;
摘要
This research presents a novel insight on gait disorder detection using transfer learning algorithms on sensor-acquired data based on the implementation of popular Convolutional Neural Network (CNN) models. The paper proposes the use of pressure sensors to extract heatmap images during gait, which are then trained and tested in various classification algorithms for gait abnormality diagnosis and detection. Gait is a biological and scientific study of body movement and locomotion that emphatically serves as a reliable parameter for inspecting the human body's neuromuscular and skeletal systems. To build a convenient and precise classification system for possible application, synthetic data was generated in multiple preexisting CNN models, which were then evaluated using conventional performance metrics. The proposed notion yielded experimental findings that showed higher accuracies for all transfer learning schemes tested, with the Vgg16 model achieving a notable accuracy of 97.15%. As a result, the analysis demonstrated not only a significant performance in terms of accuracy, but also reduced complexity and computing time, making the approach efficient yet effective.
引用
收藏
页码:717 / 722
页数:6
相关论文
共 50 条
  • [31] Detection of Real Time Face Mask using Convolutional Neural Network
    Jeyaprakash, N.
    Devi, Nivethitha M.
    Vignesh, A.
    Vignesh, L.
    Sudhakar, T. D.
    [J]. 2023 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS, ICEES, 2023, : 446 - 449
  • [32] Real-time lidar feature detection using convolutional neural networks
    McGill, Matthew J.
    Roberson, Stephen D.
    Ziegler, William
    Smith, Ron
    Yorks, John E.
    [J]. LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX, 2024, 13049
  • [33] Real-time gastric polyp detection using convolutional neural networks
    Zhang, Xu
    Chen, Fei
    Yu, Tao
    An, Jiye
    Huang, Zhengxing
    Liu, Jiquan
    Hu, Weiling
    Wang, Liangjing
    Duan, Huilong
    Si, Jianmin
    [J]. PLOS ONE, 2019, 14 (03):
  • [34] MusicNet: Compact Convolutional Neural Network for Real-time Background Music Detection
    Reddy, Chandan K. A.
    Gopal, Vishak
    Dubey, Harishchandra
    Matusevych, Sergiy
    Cutler, Ross
    Aichner, Robert
    [J]. INTERSPEECH 2022, 2022, : 4162 - 4166
  • [35] A Convolutional Neural Network Smartphone App for Real-Time Voice Activity Detection
    Sehgal, Abhishek
    Kehtarnavaz, Nasser
    [J]. IEEE ACCESS, 2018, 6 : 9017 - 9026
  • [36] Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network
    Yun, Juntong
    Jiang, Du
    Liu, Ying
    Sun, Ying
    Tao, Bo
    Kong, Jianyi
    Tian, Jinrong
    Tong, Xiliang
    Xu, Manman
    Fang, Zifan
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [37] A Real-Time Ball Detection Approach Using Convolutional Neural Networks
    Teimouri, Meisam
    Delavaran, Mohammad Hossein
    Rezaei, Mahdi
    [J]. ROBOT WORLD CUP XXIII, ROBOCUP 2019, 2019, 11531 : 323 - 336
  • [38] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396
  • [39] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):
  • [40] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    [J]. Neural Computing and Applications, 2022, 34 : 10375 - 10396