Salient Object Detection with Pyramid Attention and Salient Edges

被引:595
|
作者
Wang, Wenguan [1 ]
Zhao, Shuyang [2 ]
Shen, Jianbing [1 ,2 ]
Hoi, Steven C. H. [3 ,4 ]
Borji, Ali [5 ]
机构
[1] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[2] Beijing Inst Technol, Beijing, Peoples R China
[3] Singapore Management Univ, Singapore, Singapore
[4] Salesforce Res Asia, Singapore, Singapore
[5] MarkableAI, New York, NY USA
关键词
D O I
10.1109/CVPR.2019.00154
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new method for detecting salient objects in images using convolutional neural networks (CNNs). The proposed network, named PAGE-Net, makes two major novel contributions. The first is to devise an essential pyramid attention structure for salient object detection, which enables the network to concentrate more on salient regions while exploiting multi-scale saliency information. Such a stacked attention design offers a powerful way to efficiently enhance the representation ability of the corresponding network layer with an enlarged receptive field. The second contribution is to propose a salient edge detection module, which lies in the emphasis on the importance of salient edge information since it offers a strong cue to better segment salient objects and refine object boundaries. Such a salient edge detection module learns for precise salient boundary estimation, and thus encourages better edge-preserving salient object segmentation. Exhaustive experiments show that both of the proposed pyramid attention and salient edges are effective for salient object detection, and our PAGE-Net outperforms state-of-the-art approaches on several popular benchmarks with a fast inference speed (25FPS on a single GPU).
引用
收藏
页码:1448 / 1457
页数:10
相关论文
共 50 条
  • [11] Attention-based pyramid decoder network for salient object detection in remote sensing images
    Liu, Yu
    Lin, Jie
    Yue, Gongtao
    Shao, Zhaosheng
    Zhang, Shanwen
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [12] Salient Object Detection based on Adaptive deep Differential Pyramid
    Li, Yunshuang
    Wu, Jin
    Zhu, Lei
    Wang, Wenwu
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4081 - 4086
  • [13] Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection
    Song, Hongmei
    Wang, Wenguan
    Zhao, Sanyuan
    Shen, Jianbing
    Lam, Kin-Man
    COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 744 - 760
  • [14] Motion Guided Attention for Video Salient Object Detection
    Li, Haofeng
    Chen, Guanqi
    Li, Guanbin
    Yu, Yizhou
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7273 - 7282
  • [15] Salient Object Detection based on Spatiotemporal Attention Models
    Tapu, Ruxandra
    Zaharia, Titus
    2013 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2013, : 39 - 42
  • [16] Shifting More Attention to Video Salient Object Detection
    Fan, Deng-Ping
    Wang, Wenguan
    Cheng, Ming-Ming
    Shen, Jianbing
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8546 - 8556
  • [17] Quasi-Equilibrium Feature Pyramid Network for Salient Object Detection
    Song, Yue
    Tang, Hao
    Zhao, Mengyi
    Sebe, Nicu
    Wang, Wei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7144 - 7153
  • [18] A pooling-based feature pyramid network for salient object detection
    Shi, Caijuan
    Zhang, Weiming
    Duan, Changyu
    Chen, Houru
    IMAGE AND VISION COMPUTING, 2021, 107
  • [19] Multi-scale Pyramid Pooling Network for salient object detection
    Dakhia, Abdelhafid
    Wang, Tiantian
    Lu, Huchuan
    NEUROCOMPUTING, 2019, 333 : 211 - 220
  • [20] Revisiting Image Pyramid Structure for High Resolution Salient Object Detection
    Kim, Taehun
    Kim, Kunhee
    Lee, Joonyeong
    Cha, Dongmin
    Lee, Jiho
    Kim, Daijin
    COMPUTER VISION - ACCV 2022, PT VII, 2023, 13847 : 257 - 273