Shifting More Attention to Video Salient Object Detection

被引:424
|
作者
Fan, Deng-Ping [1 ]
Wang, Wenguan [2 ]
Cheng, Ming-Ming [1 ]
Shen, Jianbing [2 ,3 ]
机构
[1] Nankai Univ, CS, TKLNDST, Tianjin, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] Beijing Inst Technol, Beijing, Peoples R China
关键词
DETECTION MODEL; SEGMENTATION; OPTIMIZATION; DRIVEN; SCENE;
D O I
10.1109/CVPR.2019.00875
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The last decade has witnessed a growing interest in video salient object detection (VSOD). However, the research community long-term lacked a well-established VSOD dataset representative of real dynamic scenes with high-quality annotations. To address this issue, we elaborately collected a visual-attention-consistent Densely Annotated VSOD (DAVSOD) dataset, which contains 226 videos with 23,938 frames that cover diverse realistic-scenes, objects, instances and motions. With corresponding real human eye fixation data, we obtain precise ground-truths. This is the first work that explicitly emphasizes the challenge of saliency shift, i.e., the video salient object(s) may dynamically change. To further contribute the community a complete benchmark, we systematically assess 17 representative VSOD algorithms over seven existing VSOD datasets and our DAVSOD with totally similar to 84K frames (largest-scale). Utilizing three famous metrics, we then present a comprehensive and insightful performance analysis. Furthermore, we propose a baseline model. It is equipped with a saliency shift-aware convLSTM, which can efficiently capture video saliency dynamics through learning human attention-shift behavior. Extensive experiments(1) open up promising future directions for model development and comparison.
引用
收藏
页码:8546 / 8556
页数:11
相关论文
共 50 条
  • [1] Motion Guided Attention for Video Salient Object Detection
    Li, Haofeng
    Chen, Guanqi
    Li, Guanbin
    Yu, Yizhou
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7273 - 7282
  • [2] Flow driven attention network for video salient object detection
    Zhou, Feng
    Shuai, Hui
    Liu, Qingshan
    Guo, Guodong
    IET IMAGE PROCESSING, 2020, 14 (06) : 997 - 1004
  • [3] Part-aware attention correctness for video salient object detection
    Liu, Ze-yu
    Liu, Jian-wei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 119
  • [4] Video salient object detection via spatiotemporal attention neural networks
    Tang, Yi
    Zou, Wenbin
    Hua, Yang
    Jin, Zhi
    Li, Xia
    NEUROCOMPUTING, 2020, 377 (377) : 27 - 37
  • [5] Video Salient Object Detection via Contrastive Features and Attention Modules
    Chen, Yi-Wen
    Jin, Xiaojie
    Shen, Xiaohui
    Yang, Ming-Hsuan
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 536 - 545
  • [6] Salient Object Detection with Pyramid Attention and Salient Edges
    Wang, Wenguan
    Zhao, Shuyang
    Shen, Jianbing
    Hoi, Steven C. H.
    Borji, Ali
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1448 - 1457
  • [7] Reverse Attention for Salient Object Detection
    Chen, Shuhan
    Tan, Xiuli
    Wang, Ben
    Hu, Xuelong
    COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 : 236 - 252
  • [8] A novel spatiotemporal attention enhanced discriminative network for video salient object detection
    Bing Liu
    Kezhou Mu
    Mingzhu Xu
    Fangyuan Wang
    Lei Feng
    Applied Intelligence, 2022, 52 : 5922 - 5937
  • [9] A novel spatiotemporal attention enhanced discriminative network for video salient object detection
    Liu, Bing
    Mu, Kezhou
    Xu, Mingzhu
    Wang, Fangyuan
    Feng, Lei
    APPLIED INTELLIGENCE, 2022, 52 (06) : 5922 - 5937
  • [10] Video salient object detection using dual-stream spatiotemporal attention
    Xu, Chenchu
    Gao, Zhifan
    Zhang, Heye
    Li, Shuo
    de Albuquerque, Victor Hugo C.
    APPLIED SOFT COMPUTING, 2021, 108