Shifting More Attention to Video Salient Object Detection

被引:424
|
作者
Fan, Deng-Ping [1 ]
Wang, Wenguan [2 ]
Cheng, Ming-Ming [1 ]
Shen, Jianbing [2 ,3 ]
机构
[1] Nankai Univ, CS, TKLNDST, Tianjin, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] Beijing Inst Technol, Beijing, Peoples R China
关键词
DETECTION MODEL; SEGMENTATION; OPTIMIZATION; DRIVEN; SCENE;
D O I
10.1109/CVPR.2019.00875
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The last decade has witnessed a growing interest in video salient object detection (VSOD). However, the research community long-term lacked a well-established VSOD dataset representative of real dynamic scenes with high-quality annotations. To address this issue, we elaborately collected a visual-attention-consistent Densely Annotated VSOD (DAVSOD) dataset, which contains 226 videos with 23,938 frames that cover diverse realistic-scenes, objects, instances and motions. With corresponding real human eye fixation data, we obtain precise ground-truths. This is the first work that explicitly emphasizes the challenge of saliency shift, i.e., the video salient object(s) may dynamically change. To further contribute the community a complete benchmark, we systematically assess 17 representative VSOD algorithms over seven existing VSOD datasets and our DAVSOD with totally similar to 84K frames (largest-scale). Utilizing three famous metrics, we then present a comprehensive and insightful performance analysis. Furthermore, we propose a baseline model. It is equipped with a saliency shift-aware convLSTM, which can efficiently capture video saliency dynamics through learning human attention-shift behavior. Extensive experiments(1) open up promising future directions for model development and comparison.
引用
收藏
页码:8546 / 8556
页数:11
相关论文
共 50 条
  • [21] Salient Object Detection Approach in UAV Video
    Zhang, Yueqiang
    Su, Ang
    Zhu, Xianwei
    Zhang, Xiaohu
    Shang, Yang
    MIPPR 2013: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2013, 8918
  • [22] Fusing disparate object signatures for salient object detection in video
    Tu, Zhigang
    Guo, Zuwei
    Xie, Wei
    Yan, Mengjia
    Veltkamp, Remco C.
    Li, Baoxin
    Yuan, Junsong
    PATTERN RECOGNITION, 2017, 72 : 285 - 299
  • [23] STA-Net: spatial-temporal attention network for video salient object detection
    Bi, Hong-Bo
    Lu, Di
    Zhu, Hui-Hui
    Yang, Li-Na
    Guan, Hua-Ping
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3450 - 3459
  • [24] Video Salient Object Detection Via Spatiotemporal Co-Attention and Global Structural Dependence
    Liu, Bing
    Wang, Tiantian
    Gao, Lina
    Yan, Zheng
    Xu, Mingzhu
    SSRN, 2023,
  • [25] STA-Net: spatial-temporal attention network for video salient object detection
    Hong-Bo Bi
    Di Lu
    Hui-Hui Zhu
    Li-Na Yang
    Hua-Ping Guan
    Applied Intelligence, 2021, 51 : 3450 - 3459
  • [26] Salient Object Detection based on Spatiotemporal Attention Models
    Tapu, Ruxandra
    Zaharia, Titus
    2013 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2013, : 39 - 42
  • [27] GUIDANCE AND TEACHING NETWORK FOR VIDEO SALIENT OBJECT DETECTION
    Jiao, Yingxia
    Wang, Xiao
    Chou, Yu-Cheng
    Yang, Shouyuan
    Ji, Ge-Peng
    Zhu, Rong
    Gao, Ge
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2199 - 2203
  • [28] Salient Object Detection With Spatiotemporal Background Priors for Video
    Xi, Tao
    Zhao, Wei
    Wang, Han
    Lin, Weisi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) : 3425 - 3436
  • [29] A novel video salient object extraction method based on visual attention
    Yi, Yang
    Ding, Jia
    Lai, Jieling
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (01) : 45 - 54
  • [30] Multi-Stream Attention-Aware Graph Convolution Network for Video Salient Object Detection
    Xu, Mingzhu
    Fu, Ping
    Liu, Bing
    Li, Junbao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4183 - 4197