Salient Object Detection with Pyramid Attention and Salient Edges

被引:595
|
作者
Wang, Wenguan [1 ]
Zhao, Shuyang [2 ]
Shen, Jianbing [1 ,2 ]
Hoi, Steven C. H. [3 ,4 ]
Borji, Ali [5 ]
机构
[1] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[2] Beijing Inst Technol, Beijing, Peoples R China
[3] Singapore Management Univ, Singapore, Singapore
[4] Salesforce Res Asia, Singapore, Singapore
[5] MarkableAI, New York, NY USA
关键词
D O I
10.1109/CVPR.2019.00154
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new method for detecting salient objects in images using convolutional neural networks (CNNs). The proposed network, named PAGE-Net, makes two major novel contributions. The first is to devise an essential pyramid attention structure for salient object detection, which enables the network to concentrate more on salient regions while exploiting multi-scale saliency information. Such a stacked attention design offers a powerful way to efficiently enhance the representation ability of the corresponding network layer with an enlarged receptive field. The second contribution is to propose a salient edge detection module, which lies in the emphasis on the importance of salient edge information since it offers a strong cue to better segment salient objects and refine object boundaries. Such a salient edge detection module learns for precise salient boundary estimation, and thus encourages better edge-preserving salient object segmentation. Exhaustive experiments show that both of the proposed pyramid attention and salient edges are effective for salient object detection, and our PAGE-Net outperforms state-of-the-art approaches on several popular benchmarks with a fast inference speed (25FPS on a single GPU).
引用
收藏
页码:1448 / 1457
页数:10
相关论文
共 50 条
  • [31] Curiosity-Driven Salient Object Detection With Fragment Attention
    Wang, Zheng
    Wang, Pengzhi
    Han, Yahong
    Zhang, Xue
    Sun, Meijun
    Tian, Qi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5989 - 6001
  • [32] Complementarity-Aware Attention Network for Salient Object Detection
    Li, Junxia
    Pan, Zefeng
    Liu, Qingshan
    Cui, Ying
    Sun, Yubao
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (02) : 873 - 886
  • [33] Spatial attention guided cGAN for improved salient object detection
    Dhara, Gayathri
    Kumar, Ravi Kant
    FRONTIERS IN COMPUTER SCIENCE, 2024, 6
  • [34] Embedding Attention and Residual Network for Accurate Salient Object Detection
    Chen, Shuhan
    Wang, Ben
    Tan, Xiuli
    Hu, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (05) : 2050 - 2062
  • [35] Progressive Attention Guided Recurrent Network for Salient Object Detection
    Zhang, Xiaoning
    Wang, Tiantian
    Qi, Jinqing
    Lu, Huchuan
    Wang, Gang
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 714 - 722
  • [36] SDETR: ATTENTION-GUIDED SALIENT OBJECT DETECTION WITH TRANSFORMER
    Liu, Guanze
    Xu, Bo
    Huang, Han
    Lu, Cheng
    Guo, Yandong
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1611 - 1615
  • [37] Multi-attention embedded network for salient object detection
    Wei He
    Chen Pan
    Wenlong Xu
    Ning Zhang
    Soft Computing, 2021, 25 : 13053 - 13067
  • [38] Salient Object Detection by Composition
    Feng, Jie
    Wei, Yichen
    Tao, Litian
    Zhang, Chao
    Sun, Jian
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1028 - 1035
  • [39] Spectral salient object detection
    Fu, Keren
    Gu, Irene Yu-Hua
    Yang, Jie
    NEUROCOMPUTING, 2018, 275 : 788 - 803
  • [40] Salient object detection: A survey
    Borji, Ali
    Cheng, Ming-Ming
    Hou, Qibin
    Jiang, Huaizu
    Li, Jia
    COMPUTATIONAL VISUAL MEDIA, 2019, 5 (02) : 117 - 150