Salient Object Detection with Pyramid Attention and Salient Edges

被引:595
|
作者
Wang, Wenguan [1 ]
Zhao, Shuyang [2 ]
Shen, Jianbing [1 ,2 ]
Hoi, Steven C. H. [3 ,4 ]
Borji, Ali [5 ]
机构
[1] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[2] Beijing Inst Technol, Beijing, Peoples R China
[3] Singapore Management Univ, Singapore, Singapore
[4] Salesforce Res Asia, Singapore, Singapore
[5] MarkableAI, New York, NY USA
关键词
D O I
10.1109/CVPR.2019.00154
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new method for detecting salient objects in images using convolutional neural networks (CNNs). The proposed network, named PAGE-Net, makes two major novel contributions. The first is to devise an essential pyramid attention structure for salient object detection, which enables the network to concentrate more on salient regions while exploiting multi-scale saliency information. Such a stacked attention design offers a powerful way to efficiently enhance the representation ability of the corresponding network layer with an enlarged receptive field. The second contribution is to propose a salient edge detection module, which lies in the emphasis on the importance of salient edge information since it offers a strong cue to better segment salient objects and refine object boundaries. Such a salient edge detection module learns for precise salient boundary estimation, and thus encourages better edge-preserving salient object segmentation. Exhaustive experiments show that both of the proposed pyramid attention and salient edges are effective for salient object detection, and our PAGE-Net outperforms state-of-the-art approaches on several popular benchmarks with a fast inference speed (25FPS on a single GPU).
引用
收藏
页码:1448 / 1457
页数:10
相关论文
共 50 条
  • [21] Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection
    Zhao, Jia-Xing
    Cao, Yang
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Li, Xuan-Yi
    Zhang, Le
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3922 - 3931
  • [22] Salient Object Detection Based on Deep Center-Surround Pyramid
    Chen Q.
    Zhu L.
    Hou Y.
    Deng H.
    Wu J.
    Zhu, Lei (zhulei@wust.edu.cn), 1600, Science Press (33): : 496 - 506
  • [23] Optical Flow Guided Pyramid Network for Video Salient Object Detection
    Tang, Tinglong
    Hua, Sheng
    Sun, Shuifa
    Wu, Yirong
    Zhu, Yuqi
    Yue, Chonghao
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 723 - 728
  • [24] Cross-Layer Feature Pyramid Network for Salient Object Detection
    Li, Zun
    Lang, Congyan
    Liew, Jun Hao
    Li, Yidong
    Hou, Qibin
    Feng, Jiashi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4587 - 4598
  • [25] Multi-Scale Salient Object Detection with Pyramid Spatial Pooling
    Zhang, Jing
    Dai, Yuchao
    Porikli, Fatih
    He, Mingyi
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1245 - 1250
  • [26] A computational model of salient edges detection on object contour in natural images
    Bo, Yi-Hang
    Luo, Si-Wei
    Zou, Qi
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2010, 23 (06): : 752 - 758
  • [27] What is a Salient Object? A Dataset and a Baseline Model for Salient Object Detection
    Borji, Ali
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (02) : 742 - 756
  • [28] Multi-attention embedded network for salient object detection
    He, Wei
    Pan, Chen
    Xu, Wenlong
    Zhang, Ning
    SOFT COMPUTING, 2021, 25 (20) : 13053 - 13067
  • [29] Hybrid Attention Asynchronous Cascade Network for Salient Object Detection
    Yang, Haiyan
    Chen, Yongxin
    Chen, Rui
    Liu, Shuning
    MATHEMATICS, 2023, 11 (06)
  • [30] Flow driven attention network for video salient object detection
    Zhou, Feng
    Shuai, Hui
    Liu, Qingshan
    Guo, Guodong
    IET IMAGE PROCESSING, 2020, 14 (06) : 997 - 1004