Riemann-Hilbert problems and soliton solutions for a multi-component cubic-quintic nonlinear Schrodinger equation

被引:11
|
作者
Zhang, Yong [1 ]
Dong, Huan-He [1 ]
Wang, Deng-Shan [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Multi-component cubic-quintic nonlinear; Schrodinger equation; Integrable hierarchy; Riemann-Hilbert problem; Soliton solution; INVERSE SCATTERING TRANSFORM; SEMIDIRECT SUMS; MKDV SYSTEM; INTEGRABILITY; EVOLUTION; WAVES;
D O I
10.1016/j.geomphys.2019.103569
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the zero curvature equation, an arbitrary order matrix spectral problem is studied and its associated multi-component cubic-quintic nonlinear Schrodinger integrable hierarchy is derived. In order to solve the multi-component cubic-quintic nonlinear Schrodinger system, a class of Riemann-Hilbert problem is proposed with appropriate transformation. Through the special Riemann-Hilbert problem, where the jump matrix is considered to be an identity matrix, the soliton solutions of all integrable equations are explicitly calculated. The specific examples of one-soliton, two-soliton and N-soliton solutions are explicitly presented. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Traveling-wave solutions of the cubic-quintic nonlinear Schrodinger equation
    Schurmann, HW
    PHYSICAL REVIEW E, 1996, 54 (04) : 4312 - 4320
  • [22] Analytical soliton solutions for the cubic-quintic nonlinear Schrodinger equation with Raman effect in the nonuniform management systems
    Wang, Ping
    Feng, Li
    Shang, Tao
    Guo, Lixin
    Cheng, Guanghua
    Du, Yingjie
    NONLINEAR DYNAMICS, 2015, 79 (01) : 387 - 395
  • [23] Pseudorecurrence and chaos of cubic-quintic nonlinear Schrodinger equation
    Zhou, CT
    Lai, CH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (06): : 775 - 786
  • [24] Eigenvalue cutoff in the cubic-quintic nonlinear Schrodinger equation
    Prytula, Vladyslav
    Vekslerchik, Vadym
    Perez-Garcia, Victor M.
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [25] N-soliton solutions of the generalized mixed nonlinear Schrodinger equation through the Riemann-Hilbert method
    Li, Sha
    Xia, Tiecheng
    Li, Jian
    MODERN PHYSICS LETTERS B, 2022, 36 (08):
  • [26] QUASI-SOLITON AND OTHER BEHAVIOR OF THE NONLINEAR CUBIC-QUINTIC SCHRODINGER-EQUATION
    COWAN, S
    ENNS, RH
    RANGNEKAR, SS
    SANGHERA, SS
    CANADIAN JOURNAL OF PHYSICS, 1986, 64 (03) : 311 - 315
  • [27] Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 469 - 548
  • [28] Darboux transformation and soliton solutions for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Qi, Feng-Hua
    Tian, Bo
    Lu, Xing
    Guo, Rui
    Xue, Yu-Shan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2372 - 2381
  • [29] The analytic solutions of Schrodinger equation with Cubic-Quintic nonlinearities
    Wang, Chun-Yan
    RESULTS IN PHYSICS, 2018, 10 : 150 - 154
  • [30] Exact solutions and optical soliton solutions for the nonlinear Schrodinger equation with fourth-order dispersion and cubic-quintic nonlinearity
    Zayed, Elsayed M. E.
    Al-Nowehy, Abdul-Ghani
    RICERCHE DI MATEMATICA, 2017, 66 (02) : 531 - 552