Riemann-Hilbert problems and soliton solutions for a multi-component cubic-quintic nonlinear Schrodinger equation

被引:11
|
作者
Zhang, Yong [1 ]
Dong, Huan-He [1 ]
Wang, Deng-Shan [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Multi-component cubic-quintic nonlinear; Schrodinger equation; Integrable hierarchy; Riemann-Hilbert problem; Soliton solution; INVERSE SCATTERING TRANSFORM; SEMIDIRECT SUMS; MKDV SYSTEM; INTEGRABILITY; EVOLUTION; WAVES;
D O I
10.1016/j.geomphys.2019.103569
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the zero curvature equation, an arbitrary order matrix spectral problem is studied and its associated multi-component cubic-quintic nonlinear Schrodinger integrable hierarchy is derived. In order to solve the multi-component cubic-quintic nonlinear Schrodinger system, a class of Riemann-Hilbert problem is proposed with appropriate transformation. Through the special Riemann-Hilbert problem, where the jump matrix is considered to be an identity matrix, the soliton solutions of all integrable equations are explicitly calculated. The specific examples of one-soliton, two-soliton and N-soliton solutions are explicitly presented. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] The sub-ODE method and soliton solutions for a higher order dispersive cubic-quintic nonlinear Schrodinger equation
    Triki, Houria
    Taha, Thiab R.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1068 - 1072
  • [32] A new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Hao, RY
    Li, L
    Li, ZH
    Yang, RC
    Zhou, GS
    OPTICS COMMUNICATIONS, 2005, 245 (1-6) : 383 - 390
  • [33] Jacobian elliptic function solutions of the discrete cubic-quintic nonlinear Schrodinger equation
    Tiofack, G. C. Latchio
    Mohamadou, Alidou
    Kofane, T. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (23) : 6133 - 6145
  • [34] Analytical soliton solutions of the higher order cubic-quintic nonlinear Schrodinger equation and the influence of the model's parameters
    Esen, Handenur
    Secer, Aydin
    Ozisik, Muslum
    Bayram, Mustafa
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (05)
  • [35] Criteria for existence and stability of soliton solutions of the cubic-quintic nonlinear Schroedinger equation
    Schürmann, H.W.
    Serov, V.S.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 B): : 2821 - 2826
  • [36] New Exact Solutions for High Dispersive Cubic-Quintic Nonlinear Schrodinger Equation
    Xie, Yongan
    Tang, Shengqiang
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [37] STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH PERIODIC POTENTIAL
    Kengne, E.
    Vaillancourt, R.
    NONLINEAR OSCILLATIONS, 2011, 13 (04): : 569 - 583
  • [38] Traveling wave solutions of the generalized nonlinear Schrodinger equation with cubic-quintic nonlinearity
    Kudryashov, Nikolay A.
    OPTIK, 2019, 188 : 27 - 35
  • [39] New exact solutions to the high dispersive cubic-quintic nonlinear Schrodinger equation
    Xie, Yingying
    Yang, Zhaoyu
    Li, Lingfei
    PHYSICS LETTERS A, 2018, 382 (36) : 2506 - 2514
  • [40] Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation
    Azzouzi, F.
    Triki, H.
    Mezghiche, K.
    El Akrmi, A.
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1304 - 1307