Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions

被引:14
|
作者
Cisternas, Jaime [1 ]
Descalzi, Orazio [1 ]
Albers, Tony [2 ]
Radons, Guenter [2 ]
机构
[1] Univ Los Andes, Fac Ingn & Ciencias Aplicadas, Monsenor Alvaro Portillo 12455, Santiago, Chile
[2] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
关键词
RANDOM-WALKS; CONVECTION; LASER;
D O I
10.1103/PhysRevLett.116.203901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the occurrence of anomalous diffusion of dissipative solitons in a "simple" and deterministic prototype model: the cubic-quintic complex Ginzburg-Landau equation in two spatial dimensions. The main features of their dynamics, induced by symmetric-asymmetric explosions, can be modeled by a subdiffusive continuous-time random walk, while in the case dominated by only asymmetric explosions, it becomes characterized by normal diffusion.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Breathing Solitons for the One-Dimensional Nonlinear Cubic-Quintic Complex Ginzburg-Landau Equation (cqCGLE)
    Razali, Nur Shafika Abel
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 131 - 136
  • [32] Meromorphic Traveling Wave Solutions of the Complex Cubic-Quintic Ginzburg-Landau Equation
    Conte, Robert
    Ng, Tuen-Wai
    ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 153 - 166
  • [33] Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation
    Gutierrez, Pablo
    Escaff, Daniel
    Descalzi, Orazio
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1901): : 3227 - 3238
  • [34] Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation
    Akhmediev, NN
    Afanasjev, VV
    SotoCrespo, JM
    PHYSICAL REVIEW E, 1996, 53 (01) : 1190 - 1201
  • [35] Meromorphic Traveling Wave Solutions of the Complex Cubic-Quintic Ginzburg-Landau Equation
    Robert Conte
    Tuen-Wai Ng
    Acta Applicandae Mathematicae, 2012, 122 : 153 - 166
  • [36] Detection and construction of an elliptic solution of the complex cubic-quintic Ginzburg-Landau equation
    Conte, R.
    Ng, Tuen-Wai
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (02) : 1073 - 1084
  • [37] Exploding soliton and front solutions of the complex cubic-quintic Ginzburg-Landau equation
    Soto-Crespo, JM
    Akhmediev, N
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (5-6) : 526 - 536
  • [38] Detection and construction of an elliptic solution of the complex cubic-quintic Ginzburg-Landau equation
    R. Conte
    Tuen-Wai Ng
    Theoretical and Mathematical Physics, 2012, 172 : 1073 - 1084
  • [39] Optical vortices in the Ginzburg-Landau equation with cubic-quintic nonlinearity
    Wu, Zhenkun
    Wang, Zhiping
    NONLINEAR DYNAMICS, 2018, 94 (04) : 2363 - 2371
  • [40] Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation
    Akhmediev, N.N.
    Afanasjev, V.V.
    Soto-Crespo, J.M.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53 (1-B pt B):