Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions

被引:14
|
作者
Cisternas, Jaime [1 ]
Descalzi, Orazio [1 ]
Albers, Tony [2 ]
Radons, Guenter [2 ]
机构
[1] Univ Los Andes, Fac Ingn & Ciencias Aplicadas, Monsenor Alvaro Portillo 12455, Santiago, Chile
[2] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
关键词
RANDOM-WALKS; CONVECTION; LASER;
D O I
10.1103/PhysRevLett.116.203901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the occurrence of anomalous diffusion of dissipative solitons in a "simple" and deterministic prototype model: the cubic-quintic complex Ginzburg-Landau equation in two spatial dimensions. The main features of their dynamics, induced by symmetric-asymmetric explosions, can be modeled by a subdiffusive continuous-time random walk, while in the case dominated by only asymmetric explosions, it becomes characterized by normal diffusion.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Stability analysis of cavity solitons governed by the cubic-quintic Ginzburg-Landau equation
    Ding, Edwin
    Luh, Kyle
    Kutz, J. Nathan
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (06)
  • [22] A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg-Landau equation
    Mancas, S. C.
    Choudhury, S. R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (02) : 1160 - 1172
  • [23] Dissipative solitons for generalizations of the cubic complex Ginzburg-Landau equation
    Carvalho, M., I
    Facao, M.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [24] Bifurcation to traveling waves in the cubic-quintic complex Ginzburg-Landau equation
    Park, Jungho
    Strzelecki, Philip
    ANALYSIS AND APPLICATIONS, 2015, 13 (04) : 395 - 411
  • [25] Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation
    Xu, PC
    Chang, QS
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1161 - 1170
  • [26] On a cubic-quintic Ginzburg-Landau equation with global coupling
    Wei, JC
    Winter, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1787 - 1796
  • [27] Dynamical Behavior of the Random Field on the Pulsating and Snaking Solitons in Cubic-Quintic Complex Ginzburg-Landau Equation
    Bakhtiar, Nurizatul Syarfinas Ahmad
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [28] Ultrashort optical solitons in the cubic-quintic complex Ginzburg-Landau equation with higher-order terms
    Fewo, Serge I.
    Ngabireng, Claude M.
    Kofane, Timoleon C.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (07)
  • [29] Dynamics of vortex and anti-vortex solitons in a vectorial cubic-quintic complex Ginzburg-Landau equation
    Nko'o, Marius Jeannot Nko'o
    Djazet, Alain
    Mandeng, Lucien Mandeng
    Fewo, Serge Ibraid
    Tchawoua, Clement
    Kofane, Timoleon Crepin
    Bemmo, David Tatchim
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [30] Existence Conditions for Stable Stationary Solitons of the Cubic-Quintic Complex Ginzburg-Landau Equation with a Viscosity Term
    Hong, Woo-Pyo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (12): : 757 - 762