Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions

被引:14
|
作者
Cisternas, Jaime [1 ]
Descalzi, Orazio [1 ]
Albers, Tony [2 ]
Radons, Guenter [2 ]
机构
[1] Univ Los Andes, Fac Ingn & Ciencias Aplicadas, Monsenor Alvaro Portillo 12455, Santiago, Chile
[2] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
关键词
RANDOM-WALKS; CONVECTION; LASER;
D O I
10.1103/PhysRevLett.116.203901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the occurrence of anomalous diffusion of dissipative solitons in a "simple" and deterministic prototype model: the cubic-quintic complex Ginzburg-Landau equation in two spatial dimensions. The main features of their dynamics, induced by symmetric-asymmetric explosions, can be modeled by a subdiffusive continuous-time random walk, while in the case dominated by only asymmetric explosions, it becomes characterized by normal diffusion.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Modulated amplitude waves in the cubic-quintic Ginzburg-Landau equation
    Choudhury, SR
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (3-4) : 243 - 256
  • [42] Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation
    Kharenko, Denis S.
    Shtyrina, Olga V.
    Yarutkina, Irina A.
    Podivilov, Evgenii V.
    Fedoruk, Mikhail P.
    Babin, Sergey A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (10) : 2314 - 2319
  • [43] Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    Leblond, H.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [44] Dynamics of pulsating, erupting, and creeping solitons in the cubic-quintic complex Ginzburg-Landau equation under the modulated field
    Hong, Woo-Pyo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (10-11): : 525 - 535
  • [45] Effect of the random field on the dynamics of pulsating, erupting, and creeping solitons in the cubic-quintic complex Ginzburg-Landau equation
    Hong, Woo-Pyo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (12): : 615 - 623
  • [46] Interaction Dynamics of Solitons in a Linearly Coupled Ginzburg-Landau Equation with Cubic-quintic Non linearity
    Neill, Daniel R.
    Atai, Javid
    PIERS 2010 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 1061 - 1064
  • [47] Spatiotemporal structure of pulsating solitons in the cubic-quintic Ginzburg-Landau equation: A novel variational formulation
    Mancas, Stefan C.
    Choudhury, S. Roy
    CHAOS SOLITONS & FRACTALS, 2009, 40 (01) : 91 - 105
  • [48] Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion
    SotoCrespo, JM
    Akhmediev, NN
    Afanasjev, VV
    Wabnitz, S
    PHYSICAL REVIEW E, 1997, 55 (04) : 4783 - 4796
  • [49] The complex cubic-quintic Ginzburg-Landau equation: Hopf bifurcations yielding traveling waves
    Mancas, Stefan C.
    Choudhury, S. Roy
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (4-5) : 281 - 291
  • [50] Influence of boundary conditions on localized solutions of the cubic-quintic complex Ginzburg-Landau equation
    Descalzi, Orazio
    Brand, Helmut R.
    PROGRESS OF THEORETICAL PHYSICS, 2008, 119 (05): : 725 - 738