Stability analysis of cavity solitons governed by the cubic-quintic Ginzburg-Landau equation

被引:4
|
作者
Ding, Edwin [1 ]
Luh, Kyle [2 ]
Kutz, J. Nathan [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
基金
美国国家科学基金会;
关键词
PASSIVE-MODE-LOCKING; PATTERN-FORMATION; PULSE SOLUTIONS; LASER;
D O I
10.1088/0953-4075/44/6/065401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A theoretical model is proposed to describe the formation of two-dimensional solitons in a laser cavity, extending the concept of the mode locking of temporal solitons in fibre lasers to spatial mode locking in nonlinear crystals. A linear stability analysis of the governing model based upon radial symmetry is performed to characterize the multi-pulsing instability of the laser as a function of gain. It is found that a stable n-pulse solution of the system bifurcates into a (n + 1)-pulse solution through the development of a periodic solution (Hopf bifurcation), and the results are consistent with simulations of the full model.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Dynamics of NLS solitons described by the cubic-quintic Ginzburg-Landau equation
    Zhuravlev, MN
    Ostrovskaya, NV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 99 (02) : 427 - 442
  • [2] Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation
    Maruno, K
    Ankiewicz, A
    Akhmediev, N
    PHYSICS LETTERS A, 2005, 347 (4-6) : 231 - 240
  • [3] Dynamics of NLS solitons described by the cubic-quintic Ginzburg-Landau equation
    M. N. Zhuravlev
    N. V. Ostrovskaya
    Journal of Experimental and Theoretical Physics, 2004, 99 : 427 - 442
  • [4] Stability of dissipative solitons as solutions of asymmetrical complex cubic-quintic Ginzburg-Landau equation
    Skarka, V.
    Aleksic, N. B.
    Gauthier, D.
    Timotijevic, D. V.
    PIERS 2007 BEIJING: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PTS I AND II, PROCEEDINGS, 2007, : 1196 - +
  • [5] Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    Leblond, H.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [6] Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation
    Kalashnikov, V. L.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [7] A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg-Landau equation
    S. C. Mancas
    S. R. Choudhury
    Theoretical and Mathematical Physics, 2007, 152 : 1160 - 1172
  • [8] A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg-Landau equation
    Mancas, S. C.
    Choudhury, S. R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (02) : 1160 - 1172
  • [9] Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation
    Xu, PC
    Chang, QS
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1161 - 1170
  • [10] On a cubic-quintic Ginzburg-Landau equation with global coupling
    Wei, JC
    Winter, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1787 - 1796