Stability analysis of cavity solitons governed by the cubic-quintic Ginzburg-Landau equation

被引:4
|
作者
Ding, Edwin [1 ]
Luh, Kyle [2 ]
Kutz, J. Nathan [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
基金
美国国家科学基金会;
关键词
PASSIVE-MODE-LOCKING; PATTERN-FORMATION; PULSE SOLUTIONS; LASER;
D O I
10.1088/0953-4075/44/6/065401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A theoretical model is proposed to describe the formation of two-dimensional solitons in a laser cavity, extending the concept of the mode locking of temporal solitons in fibre lasers to spatial mode locking in nonlinear crystals. A linear stability analysis of the governing model based upon radial symmetry is performed to characterize the multi-pulsing instability of the laser as a function of gain. It is found that a stable n-pulse solution of the system bifurcates into a (n + 1)-pulse solution through the development of a periodic solution (Hopf bifurcation), and the results are consistent with simulations of the full model.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Effect of nonlinear gradient terms on the dynamics of solitons in the cubic-quintic complex Ginzburg-Landau equation
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (1-2): : 23 - 31
  • [22] Influence of Dirichlet boundary conditions on dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation
    Descalzi, Orazio
    Brand, Helmut R.
    PHYSICAL REVIEW E, 2010, 81 (02)
  • [23] Spatiotemporal structure of pulsating solitons in the cubic-quintic Ginzburg-Landau equation: A novel variational formulation
    Mancas, Stefan C.
    Choudhury, S. Roy
    CHAOS SOLITONS & FRACTALS, 2009, 40 (01) : 91 - 105
  • [24] Bifurcation to traveling waves in the cubic-quintic complex Ginzburg-Landau equation
    Park, Jungho
    Strzelecki, Philip
    ANALYSIS AND APPLICATIONS, 2015, 13 (04) : 395 - 411
  • [25] Interaction of Two Pulsating Solitons with a Discrete Time Separation in Complex Cubic-Quintic Ginzburg-Landau Equation
    Bakhtiar, Nurizatul Syarfinas Ahmad
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 125 - 130
  • [26] Dynamical Behavior of the Random Field on the Pulsating and Snaking Solitons in Cubic-Quintic Complex Ginzburg-Landau Equation
    Bakhtiar, Nurizatul Syarfinas Ahmad
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [27] Ultrashort optical solitons in the cubic-quintic complex Ginzburg-Landau equation with higher-order terms
    Fewo, Serge I.
    Ngabireng, Claude M.
    Kofane, Timoleon C.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (07)
  • [28] Dynamics of vortex and anti-vortex solitons in a vectorial cubic-quintic complex Ginzburg-Landau equation
    Nko'o, Marius Jeannot Nko'o
    Djazet, Alain
    Mandeng, Lucien Mandeng
    Fewo, Serge Ibraid
    Tchawoua, Clement
    Kofane, Timoleon Crepin
    Bemmo, David Tatchim
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [29] Existence Conditions for Stable Stationary Solitons of the Cubic-Quintic Complex Ginzburg-Landau Equation with a Viscosity Term
    Hong, Woo-Pyo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (12): : 757 - 762
  • [30] Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions
    Cisternas, Jaime
    Descalzi, Orazio
    Albers, Tony
    Radons, Guenter
    PHYSICAL REVIEW LETTERS, 2016, 116 (20)