Breathing Solitons for the One-Dimensional Nonlinear Cubic-Quintic Complex Ginzburg-Landau Equation (cqCGLE)

被引:0
|
作者
Razali, Nur Shafika Abel [1 ]
Abdullah, Farah Aini [1 ]
Abu Hasan, Yahya [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, Usm Penang 1180, Malaysia
关键词
One-dimensional nonlinear cuhic-quintic complex Ginzburg-Landau equation breathing solitons; numerical simulation;
D O I
10.1063/1.4887577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using one-dimensional nonlinear cubic-quintic complex Ginzburg-Landau equation (cqCOLE), we construct breathing pattern of soliton behaviour with hyperbolic sine and hyperbolic tangent as initial amplitude profile. Breathing pattern of solitons will be discussed in detail during their adjustment phase and self-organization phase. Breathing pattern is observed by means of numerical simulation.
引用
收藏
页码:131 / 136
页数:6
相关论文
共 50 条
  • [1] Stable one-dimensional dissipative solitons in complex cubic-quintic Ginzburg-Landau equation
    Aleksic, N. B.
    Pavlovic, G.
    Aleksic, B. N.
    Skarka, V.
    [J]. ACTA PHYSICA POLONICA A, 2007, 112 (05) : 941 - 947
  • [2] Moving breathing pulses in the one-dimensional complex cubic-quintic Ginzburg-Landau equation
    Gutierrez, Pablo
    Escaff, Daniel
    Perez-Oyarzun, Santiago
    Descalzi, Orazio
    [J]. PHYSICAL REVIEW E, 2009, 80 (03):
  • [3] Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation
    Kalashnikov, V. L.
    [J]. PHYSICAL REVIEW E, 2009, 80 (04):
  • [4] Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation
    Maruno, K
    Ankiewicz, A
    Akhmediev, N
    [J]. PHYSICS LETTERS A, 2005, 347 (4-6) : 231 - 240
  • [5] Cascade replication of soliton solutions in the one-dimensional complex cubic-quintic Ginzburg-Landau equation
    Zhao, Yao
    Xia, Chuan-Yin
    Zeng, Hua-Bi
    [J]. PHYSICS LETTERS A, 2020, 384 (18)
  • [6] Effect of nonlinear gradient terms on the dynamics of solitons in the cubic-quintic complex Ginzburg-Landau equation
    Hong, WP
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (1-2): : 23 - 31
  • [7] Dynamics of NLS solitons described by the cubic-quintic Ginzburg-Landau equation
    Zhuravlev, MN
    Ostrovskaya, NV
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 99 (02) : 427 - 442
  • [8] Hole solutions in the cubic complex Ginzburg-Landau equation versus holes in the cubic-quintic complex Ginzburg-Landau equation
    Brand, Helmut R.
    Descalzi, Orazio
    Cisternas, Jaime
    [J]. NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 133 - +
  • [9] Dynamics of NLS solitons described by the cubic-quintic Ginzburg-Landau equation
    M. N. Zhuravlev
    N. V. Ostrovskaya
    [J]. Journal of Experimental and Theoretical Physics, 2004, 99 : 427 - 442
  • [10] Bifurcations from stationary to pulsating solitons in the cubic-quintic complex Ginzburg-Landau equation
    Tsoy, EN
    Akhmediev, N
    [J]. PHYSICS LETTERS A, 2005, 343 (06) : 417 - 422