The glassy state, ideal glass transition, and second-order phase transition

被引:0
|
作者
Wu, JH [1 ]
机构
[1] IBM Corp, Almaden Res Ctr, 650 Harry Rd, San Jose, CA 95120 USA
关键词
glass transition; second-order phase transition; Ehrenfest relations; Prigogine-Defay ratio; analyticity;
D O I
10.1002/(SICI)1097-4628(19990103)71:1<143::AID-APP17>3.0.CO;2-I
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
According to Ehrenfest classification, the glass transition is a second-order phase transition. Controversy, however, remains due to the discrepancy between experiment and the Ehrenfest relations and thereby their prediction of unity of the Prigogine-Defay ratio in particular. In this article, we consider the case of ideal (equilibrium) glass and show that the glass transition may be described thermodynamically. At the transition, we obtain the following relations: dT/dP = Delta beta/Delta alpha and dT/dP = TV Delta alpha(1-Lambda)/Delta C-p-Delta C-v with Lambda = (alpha(g)beta(l)-alpha(l)beta(g))(2)/beta(l)beta(g)Delta alpha(2); dV/dP = V alpha(g)beta(l)-alpha(l)beta(g)/Delta alpha, dV/dP = beta(l)beta(g)(Delta C-p-Delta C-v)(alpha(g)beta(l)-alpha(l)beta(g))/T Delta alpha(alpha(l)(2)beta(g)-alpha(g)(2)beta(l)); dV/dT = V(alpha(g)beta(l)-alpha(l)beta(g))/Delta beta and dV/dT = beta(l)beta(g)(Delta C-p-Delta C-v)(alpha(g)beta(l)-alpha(l)beta(g))/T Delta beta(alpha(l)(2)beta(g)-alpha(g)(2)beta(l)). The Prigogine-Defay ratio is Pi = 1/1-(Delta C-v-Gamma)/Delta C-p with Gamma = TV(alpha(l)beta(g) - alpha(g)beta(l))(2)/beta(l)beta(g)Delta beta, instead of unity as predicted by the Ehrenfest relations. Dependent on the relative value of Delta C-V, and Gamma, the ratio may take a number equal to, larger or smaller than unity. The incorrect assumption of perfect differentiability of entropy at the transition, leading to the second Ehrenfest relation, is rectified to resolve the long-standing dilemma perplexing the nature of the glass transition. The relationships obtained in this work are in agreement with experimental findings. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
  • [31] Magnetic entropy calculation for a second-order ferromagnetic phase transition
    Zhang, Lei
    Fan, Jiyu
    Zhang, Yuheng
    MODERN PHYSICS LETTERS B, 2014, 28 (08):
  • [32] Multi-threshold second-order phase transition in laser
    ZHUANG WeiYU DeShuiLIU ZhiWen CHEN JingBiaoInstitute of Quantum Electronicsand State Key Laboratory of Advanced Optical Communication System NetworkSchool of Electronics Engineering Computer SciencePeking UniversityBeijing ChinaDepartment of Electrical EngineeringThe Pennsylvania State UniversityUniversity ParkPA USA
    Chinese Science Bulletin, 2011, 56 (35) : 3812 - 3816
  • [33] Research on electrostrictive effect of second-order phase transition ferroelectrics
    Qu, Shao H.
    Cao, Wan Q.
    Fang, Fan
    Pan, Rui K.
    Qi, Ya J.
    Zhang, Lei
    Shang, Xun Z.
    FERROELECTRICS LETTERS SECTION, 2017, 44 (4-6) : 120 - 128
  • [34] Aperiodicity-induced second-order phase transition in the 8-state Potts model
    Berche, PE
    Chatelain, C
    Berche, B
    PHYSICAL REVIEW LETTERS, 1998, 80 (02) : 297 - 300
  • [35] MODEL OF THE GLASS-TRANSITION AND THE GLASSY STATE
    SHUKLA, P
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1983, 52 (03): : 179 - 184
  • [36] Localized charge inhomogeneities and phase separation near a second-order phase transition
    Kabanov, V. V.
    Mamin, R. F.
    Shaposhnikova, T. S.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2009, 108 (02) : 286 - 291
  • [37] Localized charge inhomogeneities and phase separation near a second-order phase transition
    V. V. Kabanov
    R. F. Mamin
    T. S. Shaposhnikova
    Journal of Experimental and Theoretical Physics, 2009, 108 : 286 - 291
  • [38] Second-order dynamic transition in a p=2 spin-glass model
    van Duijvendijk, Kristina
    Jack, Robert L.
    van Wijland, Frederic
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [39] Second-order phase transition in a SnS orthorhombic crystal under pressure
    F. M. Gashimzade
    D. A. Guseinova
    Z. A. Jahangirli
    B. G. Mekhtiev
    Physics of the Solid State, 2015, 57 : 378 - 380
  • [40] Baryogenesis via density fluctuations with a second-order electroweak phase transition
    Biswanath Layer
    Soma Sanyal
    Ajit M. Srivastava
    Pramana, 2004, 62 : 761 - 764