Magnetic entropy calculation for a second-order ferromagnetic phase transition

被引:13
|
作者
Zhang, Lei [1 ]
Fan, Jiyu [2 ]
Zhang, Yuheng [1 ]
机构
[1] Chinese Acad Sci, High Field Magnet Lab, Hefei 230031, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Appl Phys, Nanjing 210016, Jiangsu, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2014年 / 28卷 / 08期
基金
中国国家自然科学基金;
关键词
Second-order ferromagnetic transition; magnetic entropy; critical exponent;
D O I
10.1142/S0217984914500596
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we present a new calculation method of magnetic entropy in an arbitrary second-order ferromagnetic phase transition system. Based on the Arrott-Noakes relation (H/M)(1/gamma) = (T -T-C)/T-C + (M/M-1)(1/beta), the Gibbs energy can be rewritten as a new form where the critical exponents are naturally included. Correspondingly, the magnetic entropy (S-M) is presented as: S-M = -[1/1/gamma+1 partial derivative A'/partial derivative T M1/gamma+1 + 1/1/beta+1/gamma+1 partial derivative B'/partial derivative T M1/beta+1/gamma+1]H1-1/gamma. Thus, the magnetic entropy change (Delta S-M) can be deduced as Delta S-M vertical bar T=T-C similar to H1+beta-1/beta+gamma. which is consistent exactly with the previous report [V. Franco et al., Appl. Phys. Lett. 89 (2006) 222512]. In addition, the conventional calculation method of magnetic entropy can be treated as a particular form of this calculation method. Furthermore, the obtained magnetic entropy change from experimental measurement are consistent with the theoretical value deduced from the present method.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Field dependence of the magnetic entropy change in typical materials with a second-order phase transition
    Dong, Qiao-yan
    Zhang, Hong-wei
    Shen, Jue-lian
    Sun, Ji-rong
    Shen, Bao-gen
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 319 (1-2) : 56 - 59
  • [2] Universality of a two-dimensional Ising ferromagnetic fluid near the second-order magnetic phase transition
    Korneta, W
    PHYSICAL REVIEW E, 2001, 64 (04): : 14 - 411091
  • [3] Exothermic effect of entropy change in second-order phase transition ferroelectrics
    Qu, Shao H.
    Mei, Ming
    Cao, Wan Q.
    Pan, Rui K.
    Qi, Ya J.
    Zhang, Lei
    Shang, Xun Z.
    FERROELECTRICS LETTERS SECTION, 2018, 45 (4-6) : 66 - 75
  • [4] Magnetocaloric effect near a second-order magnetic phase transition
    Tishin, A. M.
    Derkach, A. V.
    Spichkin, Y. I.
    Kuz'min, M. D.
    Chernyshov, A. S.
    Gschneidner, K. A., Jr.
    Pecharsky, V. K.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 2800 - 2804
  • [5] High magnetic entropy change of Pr1-xDyxNi2 compounds with second-order magnetic phase transition
    Chen, Wang
    Ma, Lei
    He, Mufen
    Dong, Peilin
    Li, Zhikun
    Zhu, Weihao
    Yao, Qingrong
    Li, Lin
    Li, Xiaomin
    Yin, Chuanqiang
    Rao, Guanghui
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (09) : 6555 - 6562
  • [6] Identification of first- and second-order magnetic phase transitions in ferromagnetic perovskites
    Mira, J
    Rivas, J
    Rivadulla, F
    Quintela, MAL
    PHYSICA B-CONDENSED MATTER, 2002, 320 (1-4) : 23 - 25
  • [7] Method for analyzing second-order phase transitions: Application to the ferromagnetic transition of a polaronic system
    Souza, JA
    Yu, YK
    Neumeier, JJ
    Terashita, H
    Jardim, RF
    PHYSICAL REVIEW LETTERS, 2005, 94 (20)
  • [8] High magnetic entropy change of Pr1−xDyxNi2 compounds with second-order magnetic phase transition
    Wang Chen
    Lei Ma
    Mufen He
    Peilin Dong
    Zhikun Li
    Weihao Zhu
    Qingrong Yao
    Lin Li
    Xiaomin Li
    Chuanqiang Yin
    Guanghui Rao
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 6555 - 6562
  • [9] Love might be a second-order phase transition
    Solnyshkov, Dmitry
    Malpuech, Guillaume
    PHYSICS LETTERS A, 2022, 445
  • [10] ON SECOND-ORDER PHASE TRANSITION IN A FERMI SYSTEM
    WELLER, W
    PHYSICS LETTERS, 1965, 15 (01): : 35 - &