The glassy state, ideal glass transition, and second-order phase transition

被引:0
|
作者
Wu, JH [1 ]
机构
[1] IBM Corp, Almaden Res Ctr, 650 Harry Rd, San Jose, CA 95120 USA
关键词
glass transition; second-order phase transition; Ehrenfest relations; Prigogine-Defay ratio; analyticity;
D O I
10.1002/(SICI)1097-4628(19990103)71:1<143::AID-APP17>3.0.CO;2-I
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
According to Ehrenfest classification, the glass transition is a second-order phase transition. Controversy, however, remains due to the discrepancy between experiment and the Ehrenfest relations and thereby their prediction of unity of the Prigogine-Defay ratio in particular. In this article, we consider the case of ideal (equilibrium) glass and show that the glass transition may be described thermodynamically. At the transition, we obtain the following relations: dT/dP = Delta beta/Delta alpha and dT/dP = TV Delta alpha(1-Lambda)/Delta C-p-Delta C-v with Lambda = (alpha(g)beta(l)-alpha(l)beta(g))(2)/beta(l)beta(g)Delta alpha(2); dV/dP = V alpha(g)beta(l)-alpha(l)beta(g)/Delta alpha, dV/dP = beta(l)beta(g)(Delta C-p-Delta C-v)(alpha(g)beta(l)-alpha(l)beta(g))/T Delta alpha(alpha(l)(2)beta(g)-alpha(g)(2)beta(l)); dV/dT = V(alpha(g)beta(l)-alpha(l)beta(g))/Delta beta and dV/dT = beta(l)beta(g)(Delta C-p-Delta C-v)(alpha(g)beta(l)-alpha(l)beta(g))/T Delta beta(alpha(l)(2)beta(g)-alpha(g)(2)beta(l)). The Prigogine-Defay ratio is Pi = 1/1-(Delta C-v-Gamma)/Delta C-p with Gamma = TV(alpha(l)beta(g) - alpha(g)beta(l))(2)/beta(l)beta(g)Delta beta, instead of unity as predicted by the Ehrenfest relations. Dependent on the relative value of Delta C-V, and Gamma, the ratio may take a number equal to, larger or smaller than unity. The incorrect assumption of perfect differentiability of entropy at the transition, leading to the second Ehrenfest relation, is rectified to resolve the long-standing dilemma perplexing the nature of the glass transition. The relationships obtained in this work are in agreement with experimental findings. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
  • [21] Multi-threshold second-order phase transition in laser
    ZHUANG Wei1
    2Department of Electrical Engineering
    Science Bulletin, 2011, (35) : 3812 - 3816
  • [22] On phase ordering behind the propagating front of a second-order transition
    T. W. B. Kibble
    G. E. Volovik
    Journal of Experimental and Theoretical Physics Letters, 1997, 65 : 102 - 107
  • [23] Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe
    Aseginolaza, Unai
    Bianco, Raffaello
    Monacelli, Lorenzo
    Paulatto, Lorenzo
    Calandra, Matteo
    Mauri, Francesco
    Bergara, Aitor
    Errea, Ion
    PHYSICAL REVIEW LETTERS, 2019, 122 (07)
  • [24] Magnetocaloric effect near a second-order magnetic phase transition
    Tishin, A. M.
    Derkach, A. V.
    Spichkin, Y. I.
    Kuz'min, M. D.
    Chernyshov, A. S.
    Gschneidner, K. A., Jr.
    Pecharsky, V. K.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 2800 - 2804
  • [25] Succession in forest coenoses: a model of second-order phase transition
    Isaev, A. S.
    Soukhovolsky, V. G.
    Buzykin, A. I.
    Ovchinnikova, T. M.
    ZHURNAL OBSHCHEI BIOLOGII, 2009, 70 (06): : 451 - 458
  • [26] On phase ordering behind the propagating front of a second-order transition
    Kibble, TWB
    Volovik, GE
    JETP LETTERS, 1997, 65 (01) : 102 - 107
  • [27] Multi-threshold second-order phase transition in laser
    Zhuang Wei
    Yu DeShui
    Liu ZhiWen
    Chen JingBiao
    CHINESE SCIENCE BULLETIN, 2011, 56 (35): : 3812 - 3816
  • [28] Realistic thermodynamic curves describing a second-order phase transition
    Bessonette, PWR
    White, MA
    JOURNAL OF CHEMICAL EDUCATION, 1999, 76 (02) : 220 - 223
  • [29] SECOND-ORDER PHASE-TRANSITION IN A MODEL RANDOM ALLOY
    PLISCHKE, M
    MATTIS, D
    PHYSICAL REVIEW B, 1973, 7 (06): : 2430 - 2434
  • [30] Pressure-induced second-order phase transition in fluorine
    Rech, Giovani L.
    Martinotto, Andre L.
    Zorzi, Janete E.
    Perottoni, Claudio A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (14) : 9935 - 9943