The glassy state, ideal glass transition, and second-order phase transition

被引:0
|
作者
Wu, JH [1 ]
机构
[1] IBM Corp, Almaden Res Ctr, 650 Harry Rd, San Jose, CA 95120 USA
关键词
glass transition; second-order phase transition; Ehrenfest relations; Prigogine-Defay ratio; analyticity;
D O I
10.1002/(SICI)1097-4628(19990103)71:1<143::AID-APP17>3.0.CO;2-I
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
According to Ehrenfest classification, the glass transition is a second-order phase transition. Controversy, however, remains due to the discrepancy between experiment and the Ehrenfest relations and thereby their prediction of unity of the Prigogine-Defay ratio in particular. In this article, we consider the case of ideal (equilibrium) glass and show that the glass transition may be described thermodynamically. At the transition, we obtain the following relations: dT/dP = Delta beta/Delta alpha and dT/dP = TV Delta alpha(1-Lambda)/Delta C-p-Delta C-v with Lambda = (alpha(g)beta(l)-alpha(l)beta(g))(2)/beta(l)beta(g)Delta alpha(2); dV/dP = V alpha(g)beta(l)-alpha(l)beta(g)/Delta alpha, dV/dP = beta(l)beta(g)(Delta C-p-Delta C-v)(alpha(g)beta(l)-alpha(l)beta(g))/T Delta alpha(alpha(l)(2)beta(g)-alpha(g)(2)beta(l)); dV/dT = V(alpha(g)beta(l)-alpha(l)beta(g))/Delta beta and dV/dT = beta(l)beta(g)(Delta C-p-Delta C-v)(alpha(g)beta(l)-alpha(l)beta(g))/T Delta beta(alpha(l)(2)beta(g)-alpha(g)(2)beta(l)). The Prigogine-Defay ratio is Pi = 1/1-(Delta C-v-Gamma)/Delta C-p with Gamma = TV(alpha(l)beta(g) - alpha(g)beta(l))(2)/beta(l)beta(g)Delta beta, instead of unity as predicted by the Ehrenfest relations. Dependent on the relative value of Delta C-V, and Gamma, the ratio may take a number equal to, larger or smaller than unity. The incorrect assumption of perfect differentiability of entropy at the transition, leading to the second Ehrenfest relation, is rectified to resolve the long-standing dilemma perplexing the nature of the glass transition. The relationships obtained in this work are in agreement with experimental findings. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
  • [41] The solution to the BCS gap equation and the second-order phase transition in superconductivity
    Watanabe, Shuji
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (02) : 353 - 364
  • [42] Large magnetocaloric effect in chromium dioxide with second-order phase transition
    Zhang, Xiao-Yu
    Chen, Yajie
    Li, Zhen-Ya
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (10) : 3243 - 3247
  • [43] Second-order phase transition of FeS under high pressure and temperature
    Kusaba, K
    Utsumi, W
    Yamakata, M
    Shimomura, O
    Syono, Y
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2000, 61 (09) : 1483 - 1487
  • [44] Nonequilibrium Second-Order Phase Transition in a Cooper-Pair Insulator
    Doron, A.
    Tamir, I.
    Mitra, S.
    Zeltzer, G.
    Ovadia, M.
    Shahar, D.
    PHYSICAL REVIEW LETTERS, 2016, 116 (05)
  • [45] Baryogenesis via density fluctuations with a second-order electroweak phase transition
    Layek, B
    Sanyal, S
    Srivastava, AM
    PRAMANA-JOURNAL OF PHYSICS, 2004, 62 (03): : 761 - 764
  • [46] Exothermic effect of entropy change in second-order phase transition ferroelectrics
    Qu, Shao H.
    Mei, Ming
    Cao, Wan Q.
    Pan, Rui K.
    Qi, Ya J.
    Zhang, Lei
    Shang, Xun Z.
    FERROELECTRICS LETTERS SECTION, 2018, 45 (4-6) : 66 - 75
  • [47] Simulation of boundary condition influence in a second-order ferroelectric phase transition
    Cao, WW
    Tavener, S
    Xie, SM
    JOURNAL OF APPLIED PHYSICS, 1999, 86 (10) : 5739 - 5746
  • [48] Second-order phase transition at high-pressure in GeS crystal
    Hashimzade, F. M.
    Huseinova, D. A.
    Jahangirli, Z. A.
    Mehdiyev, B. H.
    PHYSICA B-CONDENSED MATTER, 2014, 454 : 56 - 59
  • [49] ANALOGY BETWEEN LASER THRESHOLD REGION AND A SECOND-ORDER PHASE TRANSITION
    DEGIORGIO, V
    SCULLY, MO
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (04): : 1170 - +
  • [50] Observation of second-order spectral phase transition in optical parametric oscillator
    Roy, Arkadev
    Jahani, Saman
    Langrock, Carsten
    Fejer, Martin
    Marandi, Alireza
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,