DPANet: Depth Potentiality-Aware Gated Attention Network for RGB-D Salient Object Detection

被引:162
|
作者
Chen, Zuyao [1 ]
Cong, Runmin [2 ,3 ,4 ]
Xu, Qianqian [5 ]
Huang, Qingming [6 ,7 ,8 ,9 ]
机构
[1] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100190, Peoples R China
[2] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[3] Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China
[4] CUNY, Dept Comp Sci, Hong Kong, Peoples R China
[5] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[6] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
[7] Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management BDKM, Beijing 101408, Peoples R China
[8] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[9] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 北京市自然科学基金;
关键词
Logic gates; Object detection; Contamination; Task analysis; Saliency detection; Computer science; Image color analysis; Salient object detection; RGB-D images; depth potentiality perception; gated multi-modality attention; FUSION;
D O I
10.1109/TIP.2020.3028289
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are two main issues in RGB-D salient object detection: (1) how to effectively integrate the complementarity from the cross-modal RGB-D data; (2) how to prevent the contamination effect from the unreliable depth map. In fact, these two problems are linked and intertwined, but the previous methods tend to focus only on the first problem and ignore the consideration of depth map quality, which may yield the model fall into the sub-optimal state. In this paper, we address these two issues in a holistic model synergistically, and propose a novel network named DPANet to explicitly model the potentiality of the depth map and effectively integrate the cross-modal complementarity. By introducing the depth potentiality perception, the network can perceive the potentiality of depth information in a learning-based manner, and guide the fusion process of two modal data to prevent the contamination occurred. The gated multi-modality attention module in the fusion process exploits the attention mechanism with a gate controller to capture long-range dependencies from a cross-modal perspective. Experimental results compared with 16 state-of-the-art methods on 8 datasets demonstrate the validity of the proposed approach both quantitatively and qualitatively. https://github.com/JosephChenHub/DPANet
引用
收藏
页码:7012 / 7024
页数:13
相关论文
共 50 条
  • [31] Depth quality-aware selective saliency fusion for RGB-D image salient object detection
    Wang, Xuehao
    Li, Shuai
    Chen, Chenglizhao
    Hao, Aimin
    Qin, Hong
    [J]. NEUROCOMPUTING, 2021, 432 : 44 - 56
  • [32] Guided residual network for RGB-D salient object detection with efficient depth feature learning
    Wang, Jian
    Chen, Shuhan
    Lv, Xiao
    Xu, Xiuqi
    Hu, Xuelong
    [J]. VISUAL COMPUTER, 2022, 38 (05): : 1803 - 1814
  • [33] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhao, Zhengyun
    Huang, Ziqing
    Chai, Xiuli
    Wang, Jun
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (01) : 361 - 384
  • [34] Depth quality-aware selective saliency fusion for RGB-D image salient object detection
    Wang, Xuehao
    Li, Shuai
    Chen, Chenglizhao
    Hao, Aimin
    Qin, Hong
    [J]. Neurocomputing, 2021, 432 : 44 - 56
  • [35] SiaTrans: Siamese transformer network for RGB-D salient object detection with depth image classification
    Jia, XingZhao
    DongYe, ChangLei
    Peng, YanJun
    [J]. IMAGE AND VISION COMPUTING, 2022, 127
  • [36] Guided residual network for RGB-D salient object detection with efficient depth feature learning
    Jian Wang
    Shuhan Chen
    Xiao Lv
    Xiuqi Xu
    Xuelong Hu
    [J]. The Visual Computer, 2022, 38 : 1803 - 1814
  • [37] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhengyun Zhao
    Ziqing Huang
    Xiuli Chai
    Jun Wang
    [J]. Neural Processing Letters, 2023, 55 : 361 - 384
  • [38] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 (01) : 37 - 69
  • [39] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    [J]. COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [40] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 : 37 - 69