DPANet: Depth Potentiality-Aware Gated Attention Network for RGB-D Salient Object Detection

被引:162
|
作者
Chen, Zuyao [1 ]
Cong, Runmin [2 ,3 ,4 ]
Xu, Qianqian [5 ]
Huang, Qingming [6 ,7 ,8 ,9 ]
机构
[1] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100190, Peoples R China
[2] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[3] Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China
[4] CUNY, Dept Comp Sci, Hong Kong, Peoples R China
[5] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[6] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
[7] Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management BDKM, Beijing 101408, Peoples R China
[8] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[9] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 北京市自然科学基金;
关键词
Logic gates; Object detection; Contamination; Task analysis; Saliency detection; Computer science; Image color analysis; Salient object detection; RGB-D images; depth potentiality perception; gated multi-modality attention; FUSION;
D O I
10.1109/TIP.2020.3028289
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are two main issues in RGB-D salient object detection: (1) how to effectively integrate the complementarity from the cross-modal RGB-D data; (2) how to prevent the contamination effect from the unreliable depth map. In fact, these two problems are linked and intertwined, but the previous methods tend to focus only on the first problem and ignore the consideration of depth map quality, which may yield the model fall into the sub-optimal state. In this paper, we address these two issues in a holistic model synergistically, and propose a novel network named DPANet to explicitly model the potentiality of the depth map and effectively integrate the cross-modal complementarity. By introducing the depth potentiality perception, the network can perceive the potentiality of depth information in a learning-based manner, and guide the fusion process of two modal data to prevent the contamination occurred. The gated multi-modality attention module in the fusion process exploits the attention mechanism with a gate controller to capture long-range dependencies from a cross-modal perspective. Experimental results compared with 16 state-of-the-art methods on 8 datasets demonstrate the validity of the proposed approach both quantitatively and qualitatively. https://github.com/JosephChenHub/DPANet
引用
收藏
页码:7012 / 7024
页数:13
相关论文
共 50 条
  • [41] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476
  • [42] OBJECT-AWARE CALIBRATED DEPTH-GUIDED TRANSFORMER FOR RGB-D CO-SALIENT OBJECT DETECTION
    Wu, Yang
    Liang, Lingyan
    Zhao, Yaqian
    Zhang, Kaihua
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1121 - 1126
  • [43] Attention-aware Cross-modal Cross-level Fusion Network for RGB-D Salient Object Detection
    Chen, Hao
    Li, You-Fu
    Su, Dan
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 6821 - 6826
  • [44] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    [J]. PATTERN RECOGNITION, 2024, 150
  • [45] Feature Calibrating and Fusing Network for RGB-D Salient Object Detection
    Zhang, Qiang
    Qin, Qi
    Yang, Yang
    Jiao, Qiang
    Han, Jungong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1493 - 1507
  • [46] GroupTransNet: Group transformer network for RGB-D salient object detection
    Fang, Xian
    Jiang, Mingfeng
    Zhu, Jinchao
    Shao, Xiuli
    Wang, Hongpeng
    [J]. NEUROCOMPUTING, 2024, 594
  • [47] Triple-Complementary Network for RGB-D Salient Object Detection
    Huang, Rui
    Xing, Yan
    Zou, Yaobin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 775 - 779
  • [48] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3528 - 3542
  • [49] DMNet: Dynamic Memory Network for RGB-D Salient Object Detection
    Du, Haishun
    Zhang, Zhen
    Zhang, Minghao
    Qiao, Kangyi
    [J]. DIGITAL SIGNAL PROCESSING, 2023, 142
  • [50] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    [J]. IEEE Transactions on Image Processing, 2021, 30 : 3528 - 3542