Random walk hitting times and effective resistance in sparsely connected Erdos-Renyi random graphs

被引:3
|
作者
Sylvester, John [1 ,2 ]
机构
[1] Univ Cambridge, Dept Comp Sci & Technol, 15 JJ Thomson Ave, Cambridge CB3 0FD, England
[2] Univ Warwick, Math Inst, Coventry, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
effective resistance; hitting time; kirchoff index; random graph; random walk; COVER TIME; COMMUTE;
D O I
10.1002/jgt.22551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a bound on the effective resistance R ( x , y ) between two vertices x , y of a connected graph which contains a suitably well-connected subgraph. We apply this bound to the Erdos-Renyi random graph G ( n , p ) with n p = omega ( log n ), proving that R ( x , y ) concentrates around 1 / d ( x ) + 1 / d ( y ), that is, the sum of reciprocal degrees. We also prove expectation and concentration results for the random walk hitting times, Kirchoff index, cover cost, and the random target time (Kemeny's constant) on G ( n , p ) in the sparsely connected regime log n + log log log n <= n p < n 1 / 10.
引用
收藏
页码:44 / 84
页数:41
相关论文
共 50 条
  • [1] On hitting times for a simple random walk on dense Erdos-Renyi random graphs
    Loewe, Matthias
    Torres, Felipe
    STATISTICS & PROBABILITY LETTERS, 2014, 89 : 81 - 88
  • [2] Return probabilities and hitting times of random walks on sparse Erdos-Renyi graphs
    Martin, O. C.
    Sulc, P.
    PHYSICAL REVIEW E, 2010, 81 (03)
  • [3] Modularity of Erdos-Renyi random graphs
    McDiarmid, Colin
    Skerman, Fiona
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 211 - 243
  • [4] The Erdos-Renyi theory of random graphs
    Bollobás, B
    PAUL ERDOS AND HIS MATHEMATICS II, 2002, 11 : 79 - 134
  • [5] The distribution of first hitting times of random walks on directed Erdos-Renyi networks
    Tishby, Ido
    Biham, Ofer
    Katzav, Eytan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [6] Distribution of diameters for Erdos-Renyi random graphs
    Hartmann, A. K.
    Mezard, M.
    PHYSICAL REVIEW E, 2018, 97 (03)
  • [7] Shotgun assembly of Erdos-Renyi random graphs
    Gaudio, Julia
    Mossel, Elchanan
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [8] Changepoint Inference for Erdos-Renyi Random Graphs
    Yudovina, Elena
    Banerjee, Moulinath
    Michailidis, George
    STOCHASTIC MODELS, STATISTICS AND THEIR APPLICATIONS, 2015, 122 : 197 - 205
  • [9] Cutoff for random walk on dynamical Erdos-Renyi graph
    Sousi, Perla
    Thomas, Sam
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (04): : 2745 - 2773
  • [10] Lifshitz tails for spectra of Erdos-Renyi random graphs
    Khorunzhiy, O
    Kirsch, W
    Müller, P
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (01): : 295 - 309