Estimation of Pine Forest Height and Underlying DEM Using Multi-Baseline P-Band PolInSAR Data

被引:33
|
作者
Fu, Haiqiang [1 ]
Wang, Changcheng [1 ]
Zhu, Jianjun [1 ]
Xie, Qinghua [1 ]
Zhang, Bing [1 ]
机构
[1] Cent S Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China
来源
REMOTE SENSING | 2016年 / 8卷 / 10期
关键词
P-band polarimetric-interferometric radar (PolInSAR); forest vertical structure; complex least squares; digital terrain model; POL-INSAR; TEMPORAL DECORRELATION; PARAMETER-ESTIMATION; SAR; INVERSION; MODEL; TOPOGRAPHY; ERRORS;
D O I
10.3390/rs8100820
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
On the basis of the Gaussian vertical backscatter (GVB) model, this paper proposes a new method for extracting pine forest height and forest underlying digital elevation model (FUDEM) from multi-baseline (MB) P-band polarimetric-interferometric radar (PolInSAR) data. Considering the linear ground-to-volume relationship, the GVB is linked to the interferometric coherences of different polarizations. Subsequently, an inversion algorithm, weighted complex least squares adjustment (WCLSA), is formulated, including the mathematical model, the stochastic model and the parameter estimation method. The WCLSA method can take full advantage of the redundant observations, adjust the contributions of different observations and avoid null ground-to-volume ratio (GVR) assumption. The simulated experiment demonstrates that the WCLSA method is feasible to estimate the pure ground and volume scattering contributions. Finally, the WCLSA method is applied to E-SAR P-band data acquired over Krycklan Catchment covered with mixed pine forest. It is shown that the FUDEM highly agrees with those derived by LiDAR, with a root mean square error (RMSE) of 3.45 m, improved by 23.0% in comparison to the three-stage method. The difference between the extracted forest height and LiDAR forest height is assessed with a RMSE of 1.45 m, improved by 37.5% and 26.0%, respectively, for model and inversion aspects in comparison to three-stage inversion based on random volume over ground (RVoG) model.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] UNDER-FOLIAGE TARGET DETECTION USING MULTI-BASELINE L-BAND POLINSAR DATA
    Huang, Yue
    Ferro-Famil, Laurent
    Reigber, Andreas
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2353 - 2356
  • [22] Tomographic imaging of a forested area by airborne multi-baseline P-band SAR
    Frey, Othmar
    Morsdorf, Felix
    Meier, Erich
    SENSORS, 2008, 8 (09) : 5884 - 5896
  • [23] IMPROVEMENT OF FOREST HEIGHT RETRIEVAL BY INTEGRATION OF DUAL-BASELINE POLINSAR DATA AND EXTERNAL DEM DATA
    Xie, Qinghua
    Wang, Changcheng
    Zhu, Jianjun
    Fu, Haiqiang
    Wang, Chaohui
    IWIDF 2015, 2015, 47 (W4): : 185 - 189
  • [24] An Improvement of Vegetation Height Estimation Using Multi-baseline Polarimetric Interferometric SAR Data
    Zhou, Y. S.
    Hong, W.
    Cao, F.
    PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 691 - 695
  • [25] Pine forest height inversion using single-pass X-band PolInSAR data
    Garestier, Franck
    Dubois-Fernandez, Pascale C.
    Papathanassiou, Konstantinos Panagiotis
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (01): : 59 - 68
  • [26] A Multi-Baseline PolInSAR Forest Height Inversion Method Taking into Account the Model Ill-posed Problem
    LIN Dongfang
    ZHU Jianjun
    LI Zhiwei
    FU Haiqiang
    LIANG Ji
    ZHOU Fangbin
    ZHANG Bing
    Journal of Geodesy and Geoinformation Science, 2024, 7 (03) : 42 - 56
  • [27] Forest Height Estimation Approach Combining P-Band and X-Band Interferometric SAR Data
    Xu, Kunpeng
    Zhao, Lei
    Chen, Erxue
    Li, Kun
    Liu, Dacheng
    Li, Tao
    Li, Zengyuan
    Fan, Yaxiong
    REMOTE SENSING, 2022, 14 (13)
  • [28] A multi-baseline PolInSAR forest height inversion method taking into account the ground scattering effects and parametric linear
    Lin D.
    Zhu J.
    Li Z.
    Fu H.
    Liang J.
    Zhou F.
    Zhang B.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (01): : 51 - 60
  • [29] A New Strategy for Forest Height Estimation Using Airborne X-Band PolInSAR Data
    Xie, Jinwei
    Li, Lei
    Zhuang, Long
    Zheng, Yu
    REMOTE SENSING, 2022, 14 (19)
  • [30] Improved forest biomass estimation based on P-band repeat-pass PolInSAR data across different forest sites
    Liao, Zhanmang
    He, Binbin
    Shi, Yue
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 115