Pine forest height inversion using single-pass X-band PolInSAR data

被引:118
|
作者
Garestier, Franck [1 ]
Dubois-Fernandez, Pascale C. [1 ]
Papathanassiou, Konstantinos Panagiotis [2 ]
机构
[1] Off Natl Etud Rech Aerosp, Dept Electromagnetism & Radar, F-13661 Chatillon, France
[2] German Aerosp Ctr, Microwaves & Radar Inst, Polarimetr Synth Aperture Radar Interferometry R, F-82234 Wessling, France
来源
关键词
forest; interferometry; polarimetric synthetic aperture radar interferometry (PolInSAR); polarimetry; X-band;
D O I
10.1109/TGRS.2007.907602
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A sparse pine forest is investigated at X-band on a single-pass polarimetric synthetic aperture radar interferometry (PolInSAR) data set using HH and HV channels. These first preliminary results show that the associated phase centers present a significant vertical separation (about 6 m) allowed by penetration through gaps in the canopy. Forest parameter inversion using the random volume over ground (RVoG) model is evaluated and adapted at this frequency. The forest height can be retrieved accurately by supposing a high mean extinction coefficient (around 1.6 dB/m). The penetration depth is estimated to be around 4 m, based on the forest height ground measurements. Finally, a time-frequency analysis using a sublook decomposition is performed to increase the vertical separation of the polarimetric phase centers. As a consequence, RVoG-inversion performance is improved, and a penetration depth that is in better accordance with a previous work (of the order of 2 m) is found. This paper has shown that the height inversion of a pine forest was possible using PolInSAR X-band data and that the performance was more dependent on the forest density than at lower frequencies.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 50 条
  • [1] A New Approach for Forest Height Inversion Using X-Band Single-Pass InSAR Coherence Data
    Zhao, Lei
    Chen, Erxue
    Li, Zengyuan
    Zhang, Wangfei
    Fan, Yaxiong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] FOREST HEIGHT ESTIMATION USING SINGLE-PASS DUAL-BASELINE L-BAND POLINSAR DATA
    Zhang, Qiaoping
    Huang, Yue
    Schwaebisch, Marcus
    Mercer, Bryan
    Wei, Ming
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7055 - 7058
  • [3] A New Strategy for Forest Height Estimation Using Airborne X-Band PolInSAR Data
    Xie, Jinwei
    Li, Lei
    Zhuang, Long
    Zheng, Yu
    [J]. REMOTE SENSING, 2022, 14 (19)
  • [4] Forest-height inversion using repeat-pass spaceborne polInSAR data
    LI Zhen
    GUO Ming
    WANG ZhongQiong
    ZHAO LiFang
    [J]. Science China Earth Sciences, 2014, 57 (06) : 1314 - 1324
  • [5] Forest-height inversion using repeat-pass spaceborne polInSAR data
    Li Zhen
    Guo Ming
    Wang ZhongQiong
    Zhao LiFang
    [J]. SCIENCE CHINA-EARTH SCIENCES, 2014, 57 (06) : 1314 - 1324
  • [6] Forest-height inversion using repeat-pass spaceborne polInSAR data
    Zhen Li
    Ming Guo
    ZhongQiong Wang
    LiFang Zhao
    [J]. Science China Earth Sciences, 2014, 57 : 1314 - 1324
  • [7] TOMOGRAPHIC ANALYSIS FOR BOREAL FORESTS USING SINGLE-PASS L-BAND POLINSAR DATA
    Huang, Yue
    Zhang, Qiaoping
    Schwaebisch, Marcus
    Wei, Ming
    Mercer, Bryan
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 57 - 60
  • [8] Dual-baseline Polarimetric SAR Tomography for Tree Height Estimation Using Single-Pass L-Band PolInSAR Data
    Huang, Yue
    Zhang, Qiaoping
    Schwaebisch, Marcus
    Wei, Ming
    Mercer, Bryan
    [J]. 2013 14TH INTERNATIONAL RADAR SYMPOSIUM (IRS), VOLS 1 AND 2, 2013, : 455 - 460
  • [9] X-BAND POLINSAR VEGETATION CANOPY HEIGHT INVERSION STRATEGY BASED ON FREQUENCY SEGMENTATION
    Tang, Fanyi
    Xie, Jinwei
    Suo, Zhiyong
    Li, Han
    Li, Zhenfang
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 180 - 183
  • [10] FOREST HEIGHT ESTIMATION USING SINGLE-PASS POLARIMETRIC SAR TOMOGRAPHY AT L BAND
    Huang, Yue
    Zhang, Qiaoping
    Schwaebisch, Marcus
    Wei, Ming
    Mercer, Bryan
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,