Forest-height inversion using repeat-pass spaceborne polInSAR data

被引:12
|
作者
Li Zhen [1 ]
Guo Ming [1 ,2 ]
Wang ZhongQiong [3 ]
Zhao LiFang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resoures & Environm, Beijing 100049, Peoples R China
[3] Beijing Res Inst Uranium Geol, Beijing 100029, Peoples R China
关键词
repeat-pass PolInSAR; forest-height inversion; temporal decorrelation model; improved TD-RVoG model; SAR INTERFEROMETRY; TEMPORAL DECORRELATION;
D O I
10.1007/s11430-013-4669-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Forest-height inversion using airborne double-antenna synthetic aperture radar (SAR) systems has been widely researched, leading to increasing accuracy. Polarimetric SAR Interferometry (PolInSAR) data from spaceborne single-antenna SAR systems, which are influenced by temporal decorrelation, have difficulty inverting forest height. Given the temporal decorrelation effect, the classical random volume over ground (RVoG) model has been proven to invert forest height with significant errors, using repeat-pass PolInSAR data. In consideration of this problem, the temporal decorrelation RVoG (TD-RVoG; based on the RVoG) model was proposed. In this study, an improved TD-RVoG model is presented, with a new temporal decorrelation function. Compared with TD-RVoG, the new model has fewer unknown parameters and can be applied in a three-stage inversion procedure. Validity of the new model is demonstrated by Advanced Land Observing Satellite/Phased Array type L-band SAR (ALOS/PALSAR) data. Results show that the improved TD-RVoG has better accuracy, with inversion error less than 1.5 m.
引用
收藏
页码:1314 / 1324
页数:11
相关论文
共 50 条
  • [1] Forest-height inversion using repeat-pass spaceborne polInSAR data
    LI Zhen
    GUO Ming
    WANG ZhongQiong
    ZHAO LiFang
    [J]. Science China Earth Sciences, 2014, 57 (06) : 1314 - 1324
  • [2] Forest-height inversion using repeat-pass spaceborne polInSAR data
    Zhen Li
    Ming Guo
    ZhongQiong Wang
    LiFang Zhao
    [J]. Science China Earth Sciences, 2014, 57 : 1314 - 1324
  • [3] A Multibaseline Forest Height Inversion Method to Solve Three General Problems in P-Band Repeat-Pass PolInSAR Data
    Liao, Zhanmang
    He, Binbin
    Quan, Xingwen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] REDUCING AMBIGUITY OF VOLUME-ONLY COHERENCE IMPROVED FOREST HEIGHT INVERSION FOR P-BAND REPEAT-PASS POLINSAR DATA
    Liao, Zhanmang
    He, Binbin
    Shi, Yue
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2530 - 2533
  • [5] REFINED FOREST STAND HEIGHT INVERSION APPROACH WITH SPACEBORNE REPEAT-PASS L-BAND SAR INTERFEROMETRY AND GEDI LIDAR DATA
    Lei, Yang
    Siqueira, Paul
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6388 - 6391
  • [6] A SEQ2SEQ-BASED FOREST HEIGHT ESTIMATION FOR ZERO-BASELINE REPEAT-PASS POLINSAR DATA
    Zhang, Qi
    Wang, Yuanyuan
    Zhu, Xiaoxiang
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3102 - 3105
  • [7] Detection of Forest Disturbance With Spaceborne Repeat-Pass SAR Interferometry
    Lei, Yang
    Lucas, Richard
    Siqueira, Paul
    Schmidt, Michael
    Treuhaft, Robert
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (04): : 2424 - 2439
  • [8] DEMONSTRATION OF REPEAT-PASS POLINSAR USING UAVSAR: THE RMOG MODEL
    Lavalle, Marco
    Hensley, Scott
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5876 - 5879
  • [9] A MODIFIED RMOG MODEL FOR FOREST HEIGHT INVERSION USING L-BAND REPEAT-PASS POL-INSAR DATA
    Zhang, Qi
    Ge, Linlin
    Du, Zheyuan
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3217 - 3220
  • [10] Pine forest height inversion using single-pass X-band PolInSAR data
    Garestier, Franck
    Dubois-Fernandez, Pascale C.
    Papathanassiou, Konstantinos Panagiotis
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (01): : 59 - 68