Estimation of Pine Forest Height and Underlying DEM Using Multi-Baseline P-Band PolInSAR Data

被引:33
|
作者
Fu, Haiqiang [1 ]
Wang, Changcheng [1 ]
Zhu, Jianjun [1 ]
Xie, Qinghua [1 ]
Zhang, Bing [1 ]
机构
[1] Cent S Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China
来源
REMOTE SENSING | 2016年 / 8卷 / 10期
关键词
P-band polarimetric-interferometric radar (PolInSAR); forest vertical structure; complex least squares; digital terrain model; POL-INSAR; TEMPORAL DECORRELATION; PARAMETER-ESTIMATION; SAR; INVERSION; MODEL; TOPOGRAPHY; ERRORS;
D O I
10.3390/rs8100820
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
On the basis of the Gaussian vertical backscatter (GVB) model, this paper proposes a new method for extracting pine forest height and forest underlying digital elevation model (FUDEM) from multi-baseline (MB) P-band polarimetric-interferometric radar (PolInSAR) data. Considering the linear ground-to-volume relationship, the GVB is linked to the interferometric coherences of different polarizations. Subsequently, an inversion algorithm, weighted complex least squares adjustment (WCLSA), is formulated, including the mathematical model, the stochastic model and the parameter estimation method. The WCLSA method can take full advantage of the redundant observations, adjust the contributions of different observations and avoid null ground-to-volume ratio (GVR) assumption. The simulated experiment demonstrates that the WCLSA method is feasible to estimate the pure ground and volume scattering contributions. Finally, the WCLSA method is applied to E-SAR P-band data acquired over Krycklan Catchment covered with mixed pine forest. It is shown that the FUDEM highly agrees with those derived by LiDAR, with a root mean square error (RMSE) of 3.45 m, improved by 23.0% in comparison to the three-stage method. The difference between the extracted forest height and LiDAR forest height is assessed with a RMSE of 1.45 m, improved by 37.5% and 26.0%, respectively, for model and inversion aspects in comparison to three-stage inversion based on random volume over ground (RVoG) model.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A novel optimization approach to forest height reconstruction from multi-baseline data
    Capozzoli, A.
    D'Elia, G.
    Liseno, A.
    Moreira, A.
    Papathanassiou, K. P.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 5037 - +
  • [32] A Multibaseline Forest Height Inversion Method to Solve Three General Problems in P-Band Repeat-Pass PolInSAR Data
    Liao, Zhanmang
    He, Binbin
    Quan, Xingwen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [33] FOREST HEIGHT ESTIMATION USING ADAPTIVE DECOMPOSITION METHOD OF POLINSAR DATA
    Latrache, H.
    Souissi, B.
    Ouarzeddine, M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 641 - 644
  • [34] REDUCING AMBIGUITY OF VOLUME-ONLY COHERENCE IMPROVED FOREST HEIGHT INVERSION FOR P-BAND REPEAT-PASS POLINSAR DATA
    Liao, Zhanmang
    He, Binbin
    Shi, Yue
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2530 - 2533
  • [35] Pine forest investigation using high resolution P-band Pol-InSAR data
    Garestier, Franck
    Dubois-Fernandez, Pascale
    Champion, Isabelle
    Thuy Le Toan
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (11) : 2897 - 2905
  • [36] Polar and PolInSAR analysis of pine forest at L and P band on high resolution data
    Garestier, F
    Champion, I
    Dubois-Fernandez, P
    Paillou, P
    Dupuis, X
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 1093 - 1096
  • [37] Forest Height Estimation Using Multibaseline PolInSAR and Sparse Lidar Data Fusion
    Denbina, Michael
    Simard, Marc
    Hawkins, Brian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) : 3415 - 3433
  • [38] A Multi-Baseline Forest Height Estimation Method Combining Analytic and Geometric Expression of the RVoG Model
    Zhang, Bing
    Zhu, Hongbo
    Song, Weidong
    Zhu, Jianjun
    Dai, Jiguang
    Zhang, Jichao
    Li, Chengjin
    FORESTS, 2024, 15 (09):
  • [39] Tropical Forest Height Retrieval Based on P-Band Multibaseline SAR Data
    Yang, Xinwei
    Tebaldi, Stefano
    d'Alessandro, Mauro Mariotti
    Liao, Mingsheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 451 - 455
  • [40] Forest Height Inversion Using High-Resolution P-Band Pol-InSAR Data
    Garestier, Franck
    Dubois-Fernandez, Pascale C.
    Champion, Isabelle
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11): : 3544 - 3559