Estimation of Pine Forest Height and Underlying DEM Using Multi-Baseline P-Band PolInSAR Data

被引:33
|
作者
Fu, Haiqiang [1 ]
Wang, Changcheng [1 ]
Zhu, Jianjun [1 ]
Xie, Qinghua [1 ]
Zhang, Bing [1 ]
机构
[1] Cent S Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China
来源
REMOTE SENSING | 2016年 / 8卷 / 10期
关键词
P-band polarimetric-interferometric radar (PolInSAR); forest vertical structure; complex least squares; digital terrain model; POL-INSAR; TEMPORAL DECORRELATION; PARAMETER-ESTIMATION; SAR; INVERSION; MODEL; TOPOGRAPHY; ERRORS;
D O I
10.3390/rs8100820
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
On the basis of the Gaussian vertical backscatter (GVB) model, this paper proposes a new method for extracting pine forest height and forest underlying digital elevation model (FUDEM) from multi-baseline (MB) P-band polarimetric-interferometric radar (PolInSAR) data. Considering the linear ground-to-volume relationship, the GVB is linked to the interferometric coherences of different polarizations. Subsequently, an inversion algorithm, weighted complex least squares adjustment (WCLSA), is formulated, including the mathematical model, the stochastic model and the parameter estimation method. The WCLSA method can take full advantage of the redundant observations, adjust the contributions of different observations and avoid null ground-to-volume ratio (GVR) assumption. The simulated experiment demonstrates that the WCLSA method is feasible to estimate the pure ground and volume scattering contributions. Finally, the WCLSA method is applied to E-SAR P-band data acquired over Krycklan Catchment covered with mixed pine forest. It is shown that the FUDEM highly agrees with those derived by LiDAR, with a root mean square error (RMSE) of 3.45 m, improved by 23.0% in comparison to the three-stage method. The difference between the extracted forest height and LiDAR forest height is assessed with a RMSE of 1.45 m, improved by 37.5% and 26.0%, respectively, for model and inversion aspects in comparison to three-stage inversion based on random volume over ground (RVoG) model.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A Method to Select Coherence Window Size for forest height estimation using PolInSAR Data
    Hashjin, Sh. Sharifi
    Khazaei, S.
    Sadeghi, A.
    SMPR CONFERENCE 2013, 2013, 40-1-W3 : 505 - 508
  • [42] Forest Biophysical Parameter Estimation Using L- and P-Band Polarimetric SAR Data
    Garestier, Franck
    Dubois-Fernandez, Pascale C.
    Guyon, Dominique
    Le Toan, Thuy
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (10): : 3379 - 3388
  • [43] FOREST ABOVE GROUND BIOMASS ESTIMATION FROM P-BAND TOMOGRAPHY DATA
    Li, Lan
    Chen, Erxue
    Li, Zengyuan
    Zhao, Lei
    Gu, Xinzhi
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 21 - 23
  • [44] Tropical forest biomass retrieval using P-band PolTomSAR data
    Chehade, Bassam El Hajj
    Ferro-Famil, Laurent
    Ho Tong Minh Dinh
    Thuy Le Toan
    Tebaldini, Stefano
    11TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2016), 2016, : 51 - 54
  • [45] TROPICAL FOREST STRUCTURE ESTIMATION USING POLARIMETRIC SAR TOMOGRAPHY AT P-BAND
    Huang, Yue
    Ferro-Famil, Laurent
    Neumann, Maxim
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7593 - 7596
  • [46] Allometric equations for tropical forest estimation and its relationship with P-band SAR data
    Santos, JR
    Araujo, LS
    Freitas, CC
    Dutra, LV
    Sant'Anna, S
    Kuplich, TM
    Gama, FF
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1948 - 1950
  • [47] Slope three-layer scattering model for forest height estimation over mountain forest areas from L-band single-baseline PolInSAR data
    Nghia Pham Minh
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (02):
  • [48] Dual-baseline Polarimetric SAR Tomography for Tree Height Estimation Using Single-Pass L-Band PolInSAR Data
    Huang, Yue
    Zhang, Qiaoping
    Schwaebisch, Marcus
    Wei, Ming
    Mercer, Bryan
    2013 14TH INTERNATIONAL RADAR SYMPOSIUM (IRS), VOLS 1 AND 2, 2013, : 455 - 460
  • [49] DEM estimation from multi-baseline ENVISAT-ASAR interferometric data through maximum likelihood techniques
    Meglio, Federica
    Schirinzi, Gilda
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 4517 - 4520
  • [50] Estimation of basal area from Amazon tropical rain forest using airborne P-band SAR data
    Santos, JR
    Araujo, LS
    Dutra, LV
    Freitas, CC
    Mura, JC
    Gama, FF
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1008 - 1010