Machine-Learning Rationalization and Prediction of Solid-State Synthesis Conditions

被引:37
|
作者
Huo, Haoyan [1 ,2 ]
Bartel, Christopher J. [1 ,2 ]
He, Tanjin [1 ,2 ]
Trewartha, Amalie [2 ,3 ]
Dunn, Alexander [1 ,4 ]
Ouyang, Bin [1 ,2 ]
Jain, Anubhav [4 ]
Ceder, Gerbrand [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Toyota Res Inst, 4440 El Camino Real, Los Altos, CA 94022 USA
[4] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
IN-SITU; DATASET; BATIO3; GROWTH;
D O I
10.1021/acs.chemmater.2c01293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There currently exist no quantitative methods to determine the appropriate conditions for solid-state synthesis. This not only hinders the experimental realization of novel materials but also complicates the interpretation and understanding of solid-state reaction mechanisms. Here, we demonstrate a machine-learning approach that predicts synthesis conditions using large solid-state synthesis data sets text-mined from scientific journal articles. Using feature importance ranking analysis, we discovered that optimal heating temperatures have strong correlations with the stability of precursor materials quantified using melting points and formation energies (& UDelta;Gf, & UDelta;Hf). In contrast, features derived from the thermodynamics of synthesis-related reactions did not directly correlate to the chosen heating temperatures. This correlation between optimal solid-state heating temperature and precursor stability extends Tamman's rule from intermetallics to oxide systems, suggesting the importance of reaction kinetics in determining synthesis conditions. Heating times are shown to be strongly correlated with the chosen experimental procedures and instrument setups, which may be indicative of human bias in the data set. Using these predictive features, we constructed machine-learning models with good performance and general applicability to predict the conditions required to synthesize diverse chemical systems.
引用
收藏
页码:7323 / 7336
页数:14
相关论文
共 50 条
  • [21] Feature Engineering of Solid-State Crystalline Lattices for Machine Learning
    Cox, Timothy
    Motevalli, Benyamin
    Opletal, George
    Barnard, Amanda S.
    ADVANCED THEORY AND SIMULATIONS, 2020, 3 (02)
  • [22] Machine Learning Topological Phases with a Solid-State Quantum Simulator
    Lian, Wenqian
    Wang, Sheng-Tao
    Lu, Sirui
    Huang, Yuanyuan
    Wang, Fei
    Yuan, Xinxing
    Zhang, Wengang
    Ouyang, Xiaolong
    Wang, Xin
    Huang, Xianzhi
    He, Li
    Chang, Xiuying
    Deng, Dong-Ling
    Duan, Luming
    PHYSICAL REVIEW LETTERS, 2019, 122 (21)
  • [23] Prediction, interpretation and extrapolation for shear modulus and bulk modulus of solid-state electrolytes based on machine learning
    Wang, Yinghe
    Li, Shu
    Li, Shuai
    Chen, Minghua
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [24] Groundwater Prediction Using Machine-Learning Tools
    Hussein, Eslam A.
    Thron, Christopher
    Ghaziasgar, Mehrdad
    Bagula, Antoine
    Vaccari, Mattia
    ALGORITHMS, 2020, 13 (11)
  • [25] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [26] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    Molecular Psychiatry, 2023, 28 : 639 - 646
  • [27] Solid-state synthesis
    Wenjie Sun
    Nature Nanotechnology, 2018, 13 (1) : 4 - 4
  • [28] A machine-learning algorithm for wind gust prediction
    Sallis, P. J.
    Claster, W.
    Hernandez, S.
    COMPUTERS & GEOSCIENCES, 2011, 37 (09) : 1337 - 1344
  • [29] Anxiety onset in adolescents: a machine-learning prediction
    Chavanne, Alice
    Paillere Martinot, Marie Laure
    Penttilae, Jani
    Grimmer, Yvonne
    Conrod, Patricia
    Stringaris, Argyris
    van Noort, Betteke
    Isensee, Corinna
    Becker, Andreas
    Banaschewski, Tobias
    Bokde, Arun L. W.
    Desrivieres, Sylvane
    Flor, Herta
    Grigis, Antoine
    Garavan, Hugh
    Gowland, Penny
    Heinz, Andreas
    Bruehl, Ruediger
    Nees, Frauke
    Orfanos, Dimitri Papadopoulos
    Paus, Tomas
    Poustka, Luise
    Hohmann, Sarah S.
    Millenet, Sabina
    Froehner, Juliane
    Smolka, Michael
    Walter, Henrik
    Whelan, Robert
    Schumann, Gunter
    Martinot, Jean-Luc
    Artiges, Eric
    MOLECULAR PSYCHIATRY, 2023, 28 (02) : 639 - 646
  • [30] Machine Learning towards Screening Solid-state Lithium Ion Conductors
    Lu Yang
    Chen Xiang
    Zhao Chen-Zi
    Zhang Qiang
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2020, 39 (01) : 8 - 10