Machine Learning Topological Phases with a Solid-State Quantum Simulator

被引:50
|
作者
Lian, Wenqian [1 ]
Wang, Sheng-Tao [1 ,2 ]
Lu, Sirui [1 ]
Huang, Yuanyuan [1 ]
Wang, Fei [1 ]
Yuan, Xinxing [1 ]
Zhang, Wengang [1 ]
Ouyang, Xiaolong [1 ]
Wang, Xin [1 ]
Huang, Xianzhi [1 ]
He, Li [1 ]
Chang, Xiuying [1 ]
Deng, Dong-Ling [1 ]
Duan, Luming [1 ]
机构
[1] Tsinghua Univ, IIIS, Ctr Quantum Informat, Beijing 100084, Peoples R China
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
INSULATORS; TRANSITIONS;
D O I
10.1103/PhysRevLett.122.210503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report an experimental demonstration of a machine learning approach to identify exotic topological phases, with a focus on the three-dimensional chiral topological insulators. We show that the convolutional neural networks-a class of deep feed-forward artificial neural networks with widespread applications in machine learning-can be trained to successfully identify different topological phases protected by chiral symmetry from experimental raw data generated with a solid-state quantum simulator. Our results explicitly showcase the exceptional power of machine learning in the experimental detection of topological phases, which paves a way to study rich topological phenomena with the machine learning toolbox.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Digital quantum simulation of Floquet topological phases with a solid-state quantum simulator
    Chen, Bing
    Li, Shuo
    Hou, Xianfei
    Ge, Feifei
    Zhou, Feifei
    Qian, Peng
    Mei, Feng
    Jia, Suotang
    Xu, Nanyang
    Shen, Heng
    [J]. PHOTONICS RESEARCH, 2021, 9 (01) : 81 - 87
  • [2] Digital quantum simulation of Floquet topological phases with a solid-state quantum simulator
    BING CHEN
    SHUO LI
    XIANFEI HOU
    FEIFEI GE
    FEIFEI ZHOU
    PENG QIAN
    FENG MEI
    SUOTANG JIA
    NANYANG XU
    HENG SHEN
    [J]. Photonics Research, 2021, 9 (01) : 81 - 87
  • [3] Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator
    袁新星
    何丽
    王胜涛
    邓东灵
    王飞
    连文倩
    王歆
    张楚珩
    张慧丽
    常秀英
    段路明
    [J]. Chinese Physics Letters, 2017, 34 (06) : 21 - 25
  • [4] Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator
    Yuan, X. -X.
    He, L.
    Wang, S. -T.
    Deng, D. -L.
    Wang, F.
    Lian, W. -Q.
    Wang, X.
    Zhang, C. -H.
    Zhang, H. -L.
    Chang, X. -Y.
    Duan, L. -M.
    [J]. CHINESE PHYSICS LETTERS, 2017, 34 (06)
  • [5] Supplementary Materials:Observation of topological links associated with Hopf insulators in a solid-state quantum simulator
    XXYuan
    LHe
    STWang
    DLDeng
    FWang
    WQLian
    XWang
    CHZhang
    HLZhang
    XYChang
    LMDuan
    [J]. Chinese Physics Letters, 2017, 34 (06) : 26 - 36
  • [6] Supplementary Materials:Observation of topological links associated with Hopf insulators in a solid-state quantum simulator
    X.-X.Yuan
    L.He
    S.-T.Wang
    D.-L.Deng
    F.Wang
    W.-Q.Lian
    X.Wang
    C.-H.Zhang
    H-L.Zhang
    X.-Y.Chang
    L.-M.Duan
    [J]. Chinese Physics Letters, 2017, (06) : 26 - 36
  • [7] Multipurpose Quantum Simulator Based on a Hybrid Solid-State Quantum Device
    Yuan, Tingting
    Zhou, Fang
    Chen, Shengping
    Xiang, Shaohua
    Song, Kehui
    Zhao, Yujing
    [J]. SYMMETRY-BASEL, 2019, 11 (04):
  • [8] Machine learning discovery of new phases in programmable quantum simulator snapshots
    Miles, Cole
    Samajdar, Rhine
    Ebadi, Sepehr
    Wang, Tout T.
    Pichler, Hannes
    Sachdev, Subir
    Lukin, Mikhail D.
    Greiner, Markus
    Weinberger, Kilian Q.
    Kim, Eun-Ah
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [9] MACHINE LEARNING SUPPORTS SOLID-STATE BATTERIES
    不详
    [J]. ADVANCED MATERIALS & PROCESSES, 2023, 181 (05): : 10 - 10
  • [10] Solid-State Solar Simulator
    Bazzi, Ali M.
    Klein, Zach
    Sweeney, Micah
    Kroeger, Kevin P.
    Shenoy, Pradeep S.
    Krein, Philip T.
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2012, 48 (04) : 1195 - 1202