Spiral scanning X-ray fluorescence computed tomography

被引:9
|
作者
de Jonge, Martin D. [1 ]
Kingston, Andrew M. [2 ]
Afshar, Nader [1 ]
Garrevoet, Jan [3 ]
Kirkham, Robin [4 ]
Ruben, Gary [1 ,5 ]
Myers, Glenn R. [2 ]
Latham, Shane J. [2 ]
Howard, Daryl L. [1 ]
Paterson, David J. [1 ]
Ryan, Christopher G. [4 ]
McColl, Gawain [6 ]
机构
[1] ANSTO, Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia
[2] Australian Natl Univ, Res Sch Phys & Engn, Dept Appl Math, Acton, ACT 2601, Australia
[3] Deutsches Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
[4] CSIRO Earth Sci & Res Engn, Clayton, Vic 3168, Australia
[5] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[6] Florey Inst Neurosci & Mental Hlth, Parkville, Vic 3010, Australia
来源
OPTICS EXPRESS | 2017年 / 25卷 / 19期
关键词
CAENORHABDITIS-ELEGANS; RECONSTRUCTION; CHALLENGES; RESOLUTION; ALIGNMENT; ANGLE;
D O I
10.1364/OE.25.023424
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Scanning X-ray fluorescence tomography was once considered impractical due to prohibitive measurement time requirements but is now common for investigating metal distributions within small systems. A recent look-ahead to the possibilities of 4th-generation synchrotron light sources [ J. Synchrotron. Radiat. 21, 1031 (2014)] raised the possibility of a spiral-scanning measurement scheme where motion overheads are almost completely eliminated. Here we demonstrate the spiral scanning measurement and use Fourier ring correlation analysis to interrogate sources of resolution degradation. We develop an extension to the Fourier ring correlation formalism that enables the direct determination of the resolution from the measured sinogram data, greatly enhancing its power as a diagnostic tool for computed tomography. (C) 2017 Optical Society of America
引用
收藏
页码:23424 / 23436
页数:13
相关论文
共 50 条
  • [41] Dynamic X-ray computed tomography
    Bonnet, S
    Koenig, A
    Roux, S
    Hugonnard, P
    Guillemaud, R
    Grangeat, P
    [J]. PROCEEDINGS OF THE IEEE, 2003, 91 (10) : 1574 - 1587
  • [42] Design for X-Ray Computed Tomography
    Moroni, Giovanni
    Petro, Stefano
    [J]. 29TH CIRP DESIGN CONFERENCE 2019, 2019, 84 : 173 - 178
  • [43] Industrial computed X-ray tomography
    Luthi, T
    Flisch, A
    Wyss, P
    [J]. INSIGHT, 1998, 40 (03) : 196 - 197
  • [44] Dose in x-ray computed tomography
    Kalender, Willi A.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (03): : R129 - R150
  • [45] X-ray computed tomography of the heart
    Wijesekera, Nevin T.
    Duncan, Mark K.
    Padley, Simon P. G.
    [J]. BRITISH MEDICAL BULLETIN, 2010, 93 (01) : 49 - 67
  • [46] INTERNAL STRUCTURE OF A VERMICULAR IRONSTONE AS DETERMINED BY X-RAY COMPUTED TOMOGRAPHY SCANNING
    Zinn, Yuri Lopes
    Carducci, Carla Eloize
    Araujo, Marla Alessandra
    [J]. REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2015, 39 (02): : 345 - 349
  • [47] Optical and X-ray computed tomography scanning of 3D dosimeters
    Jordan, K. J.
    Hilts, M.
    Jirasek, A.
    [J]. 9TH INTERNATIONAL CONFERENCE ON 3D RADIATION DOSIMETRY, 2017, 847
  • [48] Feasibility study of Compton cameras for x-ray fluorescence computed tomography with humans
    Vernekohl, Don
    Ahmad, Moiz
    Chinn, Garry
    Xing, Lei
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (24): : 8521 - 8540
  • [49] X-Ray Fluorescence Computed Tomography Induced by Photon, Electron, and Proton Beams
    Dunning, Chelsea A. S.
    Bazalova-Carter, Magdalena
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (12) : 2735 - 2743
  • [50] Penalized-likelihood image reconstruction for x-ray fluorescence computed tomography
    La Riviere, Patrick J.
    Billmire, David
    Vargas, Phillip
    Rivers, Mark
    Sutton, Stephen R.
    [J]. OPTICAL ENGINEERING, 2006, 45 (07)