On representations of complex hyperbolic lattices

被引:0
|
作者
Wang, M [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following superrigidity type theorem for complex hyperbolic lattices is proved in this paper. Let X = Gamma\B-n be a compact complex ball quotient, n = 2 or 3. Suppose H-1,H-1(X, C) boolean AND H-2(X, Z) is generated by the Kahler class of X. Then any representation of Gamma in GL(n + 1, C) can either be deformed to a unitary representation or be extended to a homomorphism from SU(n, 1) into GL(n + 1, C).
引用
下载
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [1] Maximal representations of uniform complex hyperbolic lattices
    Koziarz, Vincent
    Maubon, Julien
    ANNALS OF MATHEMATICS, 2017, 185 (02) : 493 - 540
  • [2] MAXIMAL REPRESENTATIONS OF COCOMPACT COMPLEX HYPERBOLIC LATTICES, A UNIFORM APPROACH
    Chaput, Pierre-Emmanuel
    Maubon, Julien
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2019, 6 : 231 - 281
  • [3] Maximal representations of complex hyperbolic lattices into SU(m,n)
    Maria Beatrice Pozzetti
    Geometric and Functional Analysis, 2015, 25 : 1290 - 1332
  • [4] Maximal representations of complex hyperbolic lattices into SU(m,n)
    Pozzetti, Maria Beatrice
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (04) : 1290 - 1332
  • [5] Complex hyperbolic lattices
    Parker, John R.
    DISCRETE GROUPS AND GEOMETRIC STRUCTURES, 2009, 501 : 1 - 42
  • [6] Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type
    Vincent Koziarz
    Julien Maubon
    Geometriae Dedicata, 2008, 137 : 85 - 111
  • [7] Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type
    Koziarz, Vincent
    Maubon, Julien
    GEOMETRIAE DEDICATA, 2008, 137 (01) : 85 - 111
  • [8] The L2-torsion for representations of hyperbolic lattices
    Wassermann, Benjamin
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023,
  • [9] Varieties of discrete representations of hyperbolic 3-lattices
    Apanasov, B
    ALGEBRA, 1996, : 7 - 19
  • [10] Complex hyperbolic orbifolds and hybrid lattices
    Falbel, Elisha
    Pasquinelli, Irene
    GEOMETRIAE DEDICATA, 2023, 217 (02)